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Background

n Wireless channel suffers from slow/fast fading and 
transmission rate changes during packet service

n Our goal is to figure out what factors affect delay 
performance



Three-state Markov Channel Model

n Rate fluctuation of wireless channel can be capture by a three-
stage Markov Chain
n 𝜇": service rate in state j (𝜇# = 0, 𝜇' < 𝜇))
n 𝜋": Steady state probability that the channel is in state 𝑗

𝑸 =
−𝑓# 𝑓# 0
𝑓',# −𝑓' 𝑓',)
0 𝑓) −𝑓)

𝜋# =
𝑓',#𝑓)

𝑓#𝑓) + 𝑓)𝑓',# + 𝑓#𝑓',)
𝜋' =

𝑓#𝑓)
𝑓#𝑓) + 𝑓)𝑓',# + 𝑓#𝑓',)

𝜋) =
𝑓#𝑓)

𝑓#𝑓) + 𝑓)𝑓',# + 𝑓#𝑓',)

𝝅𝑸 = 𝟎
⟹

3𝜋4
4

= 1
0

crash
1
bad

f0

f1,0

2
good

f1,2

f2

𝑫 =
𝜇# 0 0
0 𝜇' 0
0 0 𝜇)



M/MMSP/1 queuing model

n If traffic input is a Poisson traffic with rate 𝜆, wireless 
communication system can be by an M/MMSP/1 model
n 𝑋 𝑡 , 𝑌 𝑡 : (number of packets, channel state) at time 𝑡
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Steady state probability
𝑝<," = lim

@→B
𝑃{𝑋 𝑡 = 𝑛, 𝑌 𝑡 = 𝑗}⟹

⟹ Mean Delay: An numerical Solution
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Feature of M/MMSP/1 Queue

n Service time of packets are not independently and identically 
distributed. It depends on the state in which the packet start 
being served [1].
n Start service in larger service rate state will lead to a smaller service

time.
n The start service state of one packet is dependent on the start service 

state of last packet.

n We use hybrid embedded Markov chain to describe the channel 
state transition during the service of packets.

[1] Mahabhashyam, S R., Natarajan G.: On queues with Markov modulated service rates. Queueing Systems 51(1), 89-113(2005).



Hybrid Embedded Points

n 𝛷": Epoch when state transits, after which channel state is 𝑗
n 𝑆"	: Epoch when service starts, after which channel state is 𝑗

n If current epoch is an embedded point with state 𝑗
n Probability that next embedded point is 𝛷4(𝑖 ≠ 𝑗): 𝑓",4/(𝜇" + 𝑓");
n Probability that next embedded point is 𝑆": 𝜇"/(𝜇" + 𝑓");
n Holding time, time from current embedded point to next embedded point, 

follows an exponential distribution with parameter	𝜇" + 𝑓" .
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Probability at Embedded Points

n 𝜋O<," 𝑚 = Pr{start−service state of  𝑚@S packet is 𝑗|an arrival 
sees 𝑛 packets in the system}

n 𝜑O<," 𝑚 = Pr{during service of  𝑚@S packet, channel transits 
into state 𝑗|an arrival sees 𝑛 packets in the system}
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Start Service Probability

n State equations of conditional start service probability
n 𝜋O<,"(𝑚) =

UV
UVWXV

𝜋O<," 𝑚 − 1 + 𝜑O<,"(𝑚 − 1)

n 𝜑O<,"(𝑚) = ∑ XZ,V
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n Matrix form of conditional start service probability
𝜋O< 𝑚 = 𝐷 −𝑄 ^'𝐷

_
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n Start service probability
n 𝜋O" = ∑ 𝑝<B
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Residual waiting time at embedded points

n A new arrival packet sees 𝑛 packets in the buffer:
n 𝑊<," 𝑘 : The residual waiting time from the epoch when this new arrival

becomes the	𝑘@S	packet in the buffer while the channel is in state	𝑗	to the
epoch when it becomes an HOL packet.

n 𝑉<," 𝑘 : The residual waiting time from the epoch when the channel
transits to state	𝑗	while this new packet is the	𝑘@S	packet in the buffer to
the epoch when it becomes an HOL packet.
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Mean Waiting Time

n State equations of conditional waiting time

n 𝑊<," 𝑘 + 1 = UV
UVWXV
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n Matrix form of conditional waiting time
𝑾< 𝑘 + 1 = 𝑫 −𝑸 ^'𝑫𝑾< 𝑘 + 𝑫 − 𝑸 ^'𝟏
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Mean Waiting Time

n Mean waiting time 
n 			𝑊 = ∑ ∑ 𝑊<," 𝑛 𝑝<,"B
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n 𝛽 = 𝜇'𝜇)/(𝜇'𝜇) + 𝜇'𝑓) + 𝜇)𝑓',)) is one of the 3 eigenvalues 
of 𝑫 −𝑸 ^'𝑫.
n 𝛽 → 0: state transition rate is much larger than service rate.
n 𝛽 → 1: state transition rate is much smaller than service rate.



Simulation result
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Conclusions

n Many problems in communication and computer networks can 
be modeled as M/MMSP/1 queueing model with several states, 
of which the numerical solution provides little physical insight

n With the help of hybrid embedded Markov chain, we obtain a 
structural solution and find that delay is influenced by state 
transition rate significantly

n Our approach can be easily extended to other finite-state 
M/MMSP/1 queueing model
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