Power Efficiency and Delay Tradeoff of Energy Efficient Ethernet Protocol

Xiaodan Pan^{a}, Tong Ye^{a}, Tony T. Lee ${ }^{b}$, and Weisheng Hu^{a}
${ }^{a}$ Shanghai Jiao Tong University, Shanghai, China
${ }^{b}$ Chinese University of Hong Kong (Shenzhen), Shenzhen 518000 China

August 22, 2017

Outline

- Power Saving Problem
- System Modeling
- Performance Tradeoff
- Conclusion

Outline

- Power Saving Problem
- System Modeling
- Performance Tradeoff Conclusion

Features of Ethernet

market is huge and still grows rapidly

utilization ratio is small ($5 \% \sim 30 \%$)

- P. J. Winzer, "Beyond 100G Ethernet," IEEE Communications Magazine, vol. 48, pp. 26-30, July 2010.
- P. Reviriego, K. Christensen, J. Rabanillo, and J. A. Maestro, "An initial evaluation of Energy Efficient Ethernet," IEEE Communications Letters, vol. 15, pp. 578-580, May 2011.
- B. Kohl, "10GBASE-T power budget summary," 2007.

EEE Protocol

- Go to sleep when idle

Problem

- Tradeoff between power efficiency and delay
- N and $\tau \uparrow \rightarrow$ LPI Length $\uparrow \rightarrow$ power efficiency \uparrow \longrightarrow delay \uparrow
- What are the rules to select N and τ ?

Overview

- Power Saving Problem
- System Modeling

■ Performance Tradeoff

- Conclusion

New Feature of EEE Queuing Systems

- EEE protocol is an M/G/1 queue with vacations modulated by arrival process
\leftarrow A working cycle $(C) \rightarrow$

Failure of Classical Analytical Method

- Example: classical P-K formula fails to describe the mean delay of EEE protocol

$$
D=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{\overline{V^{2}}}{2 \bar{V}}+\bar{X}
$$

Failure of Classical Analytical Method

- Example: classical P-K formula fails to describe the mean delay of EEE protocol

$$
D \neq \frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{\overline{V^{2}}}{2 \bar{V}}+\bar{X}
$$

Overview of Our Modeling Approach

Distribution of the number of arrivals during vacation time

Mean P-K formula
Vacation Time of Mean Delay \downarrow
Power Efficiency

Arrival Event Tree of Vacation Periods

- Six mutually-exclusive events

Distribution h_{n}

- $h_{n}=\operatorname{Pr}\{n$ arrivals during a vacation period $V\}$

$$
\begin{aligned}
H(z) & =\sum_{n=0}^{\infty} h_{n} z^{n} \\
& =e^{-\lambda T_{w}(1-z)} \\
& \times\left[\sum_{n=0}^{N-1} e^{-\lambda T_{S} \frac{\left(\lambda T_{S}\right)^{n}}{n!}\left(z^{N}-z^{n}\right)-\sum_{n=0}^{N-2} e^{-\lambda \tau} \frac{(\lambda \tau)^{n}}{n!}\left(z^{N}-z^{n+1}\right)}\right.
\end{aligned}
$$

Mean Vacation Time and Mean Cycle Time

- $H^{\prime}(1)$: the mean number of arrivals during vacation
- By Little's Law, mean vacation time \bar{V}

$$
\bar{V}=\frac{H^{\prime}(1)}{\lambda}
$$

- Mean cycle time

$$
\bar{C}=\frac{\bar{V}}{1-\rho}
$$

Power Efficiency η

$$
\begin{aligned}
\eta & =\frac{\text { average power saved in one cycle by an LPI }}{\text { averge power of one cycle if EEE is not used }} \\
& =\frac{\left(\bar{V}-T_{S}-T_{w}\right) \times\left(\varphi_{h}-\varphi_{l}\right)}{\bar{C} \times \varphi_{h}} \\
& =\left(1-\frac{T_{w}+T_{S}}{\bar{V}}\right) \cdot \frac{(1-\rho) \times\left(\varphi_{h}-\varphi_{l}\right)}{\varphi_{h}}
\end{aligned}
$$

Delay Analysis

(a) Frame F_{i} arrives during a vacation period.

(b) Frame F_{i} arrives during a busy period.

$$
D=\frac{R}{1-\rho}+\bar{X}, R: \text { mean residual time }
$$

Mean Residual Time

$$
\begin{aligned}
R & =\boldsymbol{E}\left[\boldsymbol{R}_{\boldsymbol{i}} \mid \xi=\mathbf{0}\right] \times \operatorname{Pr}\{\xi=0\}+\boldsymbol{E}\left[\boldsymbol{R}_{\boldsymbol{i}} \mid \xi=\mathbf{1}\right] \times \operatorname{Pr}\{\xi=1\} \\
& =E\left[R_{i} \mid \xi=0\right] \times(1-\rho)+E\left[R_{i} \mid \xi=1\right] \times \rho
\end{aligned}
$$

$$
\xi=\left\{\begin{array}{lr}
0, & \text { if frame arrives during a vacation period } \\
1, & \text { if frame arrives during a busy period }
\end{array}\right.
$$

$E\left[R_{i} \mid \xi=1\right]=\frac{1}{2 \rho} \lambda \overline{X^{2}}$: independent of arrival process
$E\left[R_{i} \mid \xi=0\right]=$?: dependent on arrival process

Residual Vacation Time of Each Arrival

- Given V_{n}, number of arrivals during residual vacation time seen by a frame is determined

Mean Residual Vacation Time

$E\left[R_{i} \mid \xi=0\right]=\sum_{n=1}^{\infty} E\left[R_{i} \mid \xi=0\right.$, frame i arrives in a $\left.V_{n}\right] \cdot P_{n}$

- P_{n} : conditional probability that a frame arrives in a V_{n}.
- Applying Little's Law

$$
\begin{aligned}
\lambda E\left[R_{i} \mid \xi=0\right] & =\sum_{n=1}^{\infty} \lambda E\left[R_{i} \mid \xi=0, \text { frame } i \text { arrives in a } V_{n}\right] \cdot P_{n} \\
& =\sum_{n=1}^{\infty} E\left[Q_{i} \mid \xi=0, \text { frame } i \text { arrives in a } V_{n}\right] \cdot P_{n} \\
& =\sum_{n=1}^{\infty}\left[\frac{(n-1)+(n-2)+\cdots+1+0}{n}\right] \cdot \frac{n \cdot h_{n}}{H^{\prime}(1)} \\
& =\frac{H^{\prime \prime}(1)}{2 H^{\prime}(1)} .
\end{aligned}
$$

P-K Formula of Mean Delay

- Theorem 1: The mean delay of EEE systems is given by:

$$
D=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{H^{\prime \prime}(1)}{2 \lambda H^{\prime}(1)}+\bar{X}
$$

$$
\text { if } H(z)=V^{*}(\lambda-\lambda z)
$$

- Classical P-K Formula

$$
D=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{\overline{V^{2}}}{2 \bar{V}}+\bar{X}
$$

Overview

■ Power Saving Problem

- System Modeling

Performance Tradeoff

- Conclusion

Timer vs. Counter

- $\eta_{\tau \& N} \approx \eta_{\tau} \approx \eta_{N}$
- $D_{\tau \& N}=\min \left\{D_{\tau}, D_{N}\right\}$

Explanation: Wakeup Triggers of $\tau \& N$ policy

- $\tau \& N$ policy can adaptively use τ and N to wake up according to instantaneous arrival rate if $\tau=\frac{N-1}{\lambda}$

(a) 10 high-rate/low-rate periods in the simulation

(b) trigger records of the process

Rule EEE 1

For a given steady state traffic rate λ, the selection of parameters τ and N should comply with the following condition:

$$
\frac{N-1}{\tau}=\lambda
$$

Power Efficiency versus Mean Delay

- Excessively large τ and N degrade delay performance while marginally enhancing the power efficiency

Rule EEE 2

Based on EEE 1, parameter N can be selected according to a given average delay requirement D from the expression of D_{N}

$$
D_{N} \approx \frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{\left(N+\lambda T_{w}\right)^{2}-N}{2 \lambda\left(N+\lambda T_{w}\right)}+\bar{X}
$$

Conclusions

- Develop a new approach to analyze the $M / G / 1$ queue with vacations governed by the arrival process
- Derive a generalized P-K formula of mean delay
- Provide two rules to select appropriate τ and N

Thank You!

