Power Efficiency and Delay Tradeoff of Energy Efficient Ethernet Protocol

Xiaodan Pan^{*a*}, Tong Ye^{*a*}, Tony T. Lee^{*b*}, and Weisheng Hu^{*a*}

^aShanghai Jiao Tong University, Shanghai, China ^bChinese University of Hong Kong (Shenzhen), Shenzhen 518000 China

August 22, 2017

- Power Saving Problem
- System Modeling
- Performance Tradeoff
- Conclusion

Power Saving Problem

System Modeling

Performance Tradeoff

Conclusion

Features of Ethernet

- P. J. Winzer, "Beyond 100G Ethernet," IEEE Communications Magazine, vol. 48, pp. 26–30, July 2010.
- P. Reviriego, K. Christensen, J. Rabanillo, and J. A. Maestro, "An initial evaluation of Energy Efficient Ethernet," IEEE Communications Letters, vol. 15, pp. 578–580, May 2011.
- B. Kohl, "10GBASE-T power budget summary," 2007.

EEE Protocol

• Go to sleep when idle

- Sleeping strategies:
 - $\tau \& N$ policy: τ and N are finite
 - τ policy: $N \to \infty$
 - *N* policy: $\tau \to \infty$

Tradeoff between power efficiency and delay
 N and τ ↑ → LPI Length ↑ → power efficiency ↑
 delay ↑

• What are the rules to select *N* and τ ?

Power Saving Problem

- System Modeling
- Performance Tradeoff
- Conclusion

New Feature of EEE Queuing Systems

EEE protocol is an M/G/1 queue with vacations modulated by arrival process

 \leftarrow A working cycle (*C*) \rightarrow

Failure of Classical Analytical Method

 Example: classical P-K formula fails to describe the mean delay of EEE protocol

$$D = \frac{\lambda \overline{X^2}}{2(1-\rho)} + \frac{\overline{V^2}}{2\overline{V}} + \overline{X}$$

Failure of Classical Analytical Method

 Example: classical P-K formula fails to describe the mean delay of EEE protocol

$$D \neq \frac{\lambda \overline{X^2}}{2(1-\rho)} + \frac{\overline{V^2}}{2\overline{V}} + \overline{X}$$

Arrival Event Tree of Vacation Periods

Six mutually-exclusive events

• $h_n = \Pr\{n \text{ arrivals during a vacation period } V\}$ $H(z) = \sum_{n=0}^{\infty} h_n z^n$ $= e^{-\lambda T_w(1-z)}$ $\times \left[\sum_{n=0}^{N-1} e^{-\lambda T_s} \frac{(\lambda T_s)^n}{n!} (z^N - z^n) - \sum_{n=0}^{N-2} e^{-\lambda \tau} \frac{(\lambda \tau)^n}{n!} (z^N - z^{n+1})\right]$

Mean Vacation Time and Mean Cycle Time

- H'(1): the mean number of arrivals during vacation
- By Little's Law, mean vacation time \overline{V} $\overline{V} = \frac{H'(1)}{\lambda}$
- Mean cycle time

$$\bar{C} = \frac{\bar{V}}{1-\rho}$$

Power Efficiency η

 $\eta = \frac{\text{average power saved in one cycle by an LPI}}{\text{averge power of one cycle if EEE is not used}}$ $= \frac{(\overline{V} - T_S - T_W) \times (\varphi_h - \varphi_l)}{\overline{C} \times \varphi_h}$ $= \left(1 - \frac{T_W + T_S}{\overline{V}}\right) \cdot \frac{(1 - \rho) \times (\varphi_h - \varphi_l)}{\varphi_h}$

Delay Analysis

• D. P. Bertsekas, R. G. Gallager, and P. Humblet, *Data networks*, vol. 2. Prentice-Hall International New Jersey, 1992.

Mean Residual Time

$$R = E[R_i | \xi = 0] \times Pr\{\xi = 0\} + E[R_i | \xi = 1] \times Pr\{\xi = 1\}$$
$$= E[R_i | \xi = 0] \times (1 - \rho) + E[R_i | \xi = 1] \times \rho$$
$$\xi = \begin{cases} 0, & \text{if frame arrives during a vacation period} \\ 1, & \text{if frame arrives during a busy period} \end{cases}$$

$$E[R_i|\xi = 1] = \frac{1}{2\rho}\lambda \overline{X^2}$$
: independent of arrival process
 $E[R_i|\xi = 0] = ?$: dependent on arrival process

• D. P. Bertsekas, R. G. Gallager, and P. Humblet, *Data networks*, vol. 2. Prentice-Hall International New Jersey, 1992.

Residual Vacation Time of Each Arrival

• Given V_n , number of arrivals during residual vacation time seen by a frame is determined

 $E[R_i|\xi = 0] = \sum_{n=1}^{\infty} E[R_i|\xi = 0, \text{ frame } i \text{ arrives in a } V_n] \cdot P_n$ • P_n : conditional probability that a frame arrives in a V_n .

• Applying Little's Law $\lambda E[R_i|\xi = 0] = \sum_{n=1}^{\infty} \lambda E[R_i|\xi = 0, \text{ frame } i \text{ arrives in a } V_n] \cdot P_n$ $= \sum_{n=1}^{\infty} E[Q_i|\xi = 0, \text{ frame } i \text{ arrives in a } V_n] \cdot P_n$ $= \sum_{n=1}^{\infty} \left[\frac{(n-1)+(n-2)+\dots+1+0}{n}\right] \cdot \frac{n \cdot h_n}{H'(1)}$ $= \frac{H''(1)}{2H'(1)}.$ Theorem 1: The mean delay of EEE systems is given by:

$$D = \frac{\lambda X^2}{2(1-\rho)} + \frac{H''(1)}{2\lambda H'(1)} + \bar{X}$$

• Classical P-K Formula

$$D = \frac{\lambda \overline{X^2}}{2(1-\rho)} + \frac{\overline{V^2}}{2\overline{V}} + \bar{X}$$

Power Saving Problem

System Modeling

Performance Tradeoff

Conclusion

Timer vs. Counter

$\eta_{\tau \& N} \approx \eta_{\tau} \approx \eta_{N}$ $D_{\tau \& N} = \min\{D_{\tau}, D_{N}\}$

Explanation: Wakeup Triggers of $\tau \& N$ policy

• $\tau \& N$ policy can adaptively use τ and N to wake up according to instantaneous arrival rate if $\tau = \frac{N-1}{\lambda}$

For a given steady state traffic rate λ , the selection of parameters τ and *N* should comply with the following condition:

$$\frac{N-1}{\tau} = \lambda.$$

Power Efficiency versus Mean Delay

 Excessively large τ and N degrade delay performance while marginally enhancing the power efficiency

Based on EEE 1, parameter *N* can be selected according to a given average delay requirement *D* from the expression of D_N

$$D_N \approx \frac{\lambda \overline{X^2}}{2(1-\rho)} + \frac{(N+\lambda T_w)^2 - N}{2\lambda(N+\lambda T_w)} + \overline{X}$$

Conclusions

- Develop a new approach to analyze the *M/G/1* queue with vacations governed by the arrival process
- Derive a generalized P-K formula of mean delay
- Provide two rules to select appropriate τ and N

Thank You!