Central Limit Theorem: Let X;,X,, -+, X,, be i.i.d random variables with mean E[X;] = u, and
variance Var[X;] = a2, then
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Proof. Suppose Y is a random variable with E[Y] = 0 and Var[Y] = 1. Then
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Let ¥; = ==£ then E[Y;] = 0 and Var[Y;] = 1, we have
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Therefore, Z,, ~ N(0,1).
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Stirling’s Formula: n! ~v2nn (Z)

First Proof. Suppose that the random variable X is Poisson with mean E[X] = n,and variance
Var[X] = n, then we have
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Consider the random variable X as the sum of n independent and identical Poisson random
variables X; defined as follows:
X=X +X,++X,
where each X; is a Poisson random variable with mean 1 and variance 1. From the central limit
theorem, we have
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Second Proof. Take logarithm of n!, we have
Logn! = Log1 + Log2 + ---Logn
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Let I, denote the area under the curve Logx, we have
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Upper limit (trapezoids):
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Let a,, = Logn! — (n + %) Logn + n. We have
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To show that {a,} converges, we need to prove that it’s monotonic. Use Taylor series expansion,
we have
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Substitute t by ﬁ we have
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Therefore, the sequence {a,} is monotonically decreasing and convergent. Assume that
n
nl = C(g) v/n. We need the following Wallis formula to determine the constant C.
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Since S, = g,and S; = 1, we have
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Because {S,} is monotonically decreasing, and SS—" = "T_l ~1. We have ~1. Therefore
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Multiply the denominator to both nominator and denominator, we have
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Substitute n! by (")n\/ﬁ C, we have
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Hence, the Stirling’s formula n!~ Znn( ) is established.

Hall’s Theorem: A bipartite graph G(X,Y,E) contains a matching of X if and only if
IN(S)| =S, VScX.
Proof. We prove the theorem by induction on |X|. For |X| = 1, the assertion is true. Now, let



|X(G)| = n (n = 2), and assume Hall’s theorem holds for all |X| < n.
Casel: [IN;(S)|=|S|+1, vVScX
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Takeanedge e =xy, x €X, y €Y. Let
G'=G6—-{xy}
Then the condition satisfies:
INg/(S)| =S, VS X—{x}
Because |X(G")| = |X — {x}] = n — 1 < n, by the induction hypothesis, G’ contains a matching
of X — {x}. Together with the edge e, this yields a matching of X.

Case 2: |[N;(S)|=S, 3ScX

Let
G' = SUN.(S)
By the induction hypothesis, G’ contains a matching M, of S. We show that G — G’ satisfies the
marriage condition by contradiction. Suppose that
INo_g'(SHI < |S'], 3S'cX—S
We have
INg(S"US)| = INg(SDI + [Ng(S)] — INg(S) NN (S| = [Ng_g' (S + IS| < [S"| + |S]
=|S"uS]|
which contradicts our assumption. Again, by induction, ¢ — G' contains a matching M, of X —S.
The union of the two matchings M; U M, is a matching of X.

Corollary: m-regular bipartite graph can be edge colored by m colors.
Proof. Consider a bipartite graph G(X,Y,E) with §(v) =m, Vv € G. Define

E(S) := {e|eis incident to a vertex v € S},
we have

E(S)c E(N(S)), VScX.
Therefore
IES)| < [E(NS))|
Because |E(S)| =mlS|,and |E(N(S))| =m|N(S)|, we have
m|S| < m|N(S)|
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which satisfies Hall’s condition, and thus a matching M exists in G. Since the bipartite graph
G=G6G—-M
is also regular with 6(v) = m — 1, ¥ v € G'. Therefore we can use the above strategy repeatedly
until §(v) = 0. As a result, we get a total of m matching in G, each corresponds to a color,
hence G can be edge colored by m colors.

(Prepared by Miao Zhang, May 29, 2011)



