Central Limit Theorem: Let X_1, X_2, \dots, X_n be i.i.d random variables with mean $E[X_i] = \mu$, and variance $Var[X_i] = \sigma^2$, then

$$Z_n = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \to N(0,1)$$

Proof. Suppose Y is a random variable with E[Y] = 0 and Var[Y] = 1. Then

$$\Phi_Y(t) = E[e^{tY}] = 1 + \frac{t^2}{2} + o(t^2)$$

Let $Y_i = \frac{X_i - \mu}{\sigma}$, then $E[Y_i] = 0$ and $Var[Y_i] = 1$, we have

$$\Phi_{Z_n}(t) = E\left[e^{t\left[\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}\right]}\right]$$
$$= E\left[e^{\frac{t}{\sqrt{n}}[Y_1 + Y_2 \dots + Y_n]}\right]$$
$$= E\left[e^{\frac{t}{\sqrt{n}}Y_1}\right] \cdots E\left[e^{\frac{t}{\sqrt{n}}Y_n}\right]$$
$$= \left[\Phi_Y\left(\frac{t}{\sqrt{n}}\right)\right]^n$$
$$= \left[1 + \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right]^n \rightarrow e^{\frac{t^2}{2}}$$

Therefore, $Z_n \sim N(0,1)$.

Stirling's Formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

First Proof. Suppose that the random variable X is Poisson with mean E[X] = n, and variance Var[X] = n, then we have

$$\Pr\{X=n\} = \frac{n^n e^{-n}}{n!}$$

Consider the random variable X as the sum of n independent and identical Poisson random variables X_i defined as follows:

$$X = X_1 + X_2 + \dots + X_n$$

where each X_i is a Poisson random variable with mean 1 and variance 1. From the central limit theorem, we have

$$\frac{X_1 + X_2 + \dots + X_n - n}{\sqrt{n}} \sim N(0,1)$$

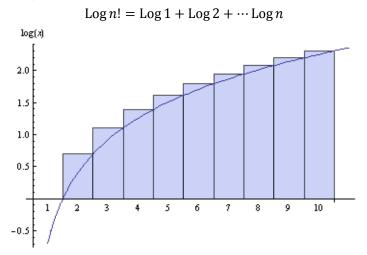
Therefore,

$$Pr\{X=n\} = Pr\left\{-\frac{1}{2\sqrt{n}} \le \frac{X_1 + X_2 + \dots + X_n - n}{\sqrt{n}} \le \frac{1}{2\sqrt{n}}\right\}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\frac{1}{2\sqrt{n}}}^{\frac{1}{2\sqrt{n}}} e^{-\frac{x^2}{2}} dx = \frac{e^{-\frac{\theta^2}{2}}}{\sqrt{2\pi n}}, \quad \left(\theta \in \left[-\frac{1}{2\sqrt{n}}, \frac{1}{2\sqrt{n}}\right]\right)$$

Since $\theta \to 0$ as $n \to \infty$, hence

$$\frac{n^n e^{-n}}{n!} \sim \frac{1}{\sqrt{2\pi n}}$$
$$\rightarrow \quad n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Second Proof. Take logarithm of n!, we have



Let I_n denote the area under the curve $\log x$, we have

$$I_n = \int_1^n \log x \, dx = n \log n - n + 1$$

Upper limit (trapezoids):

$$\begin{split} I_n > &\frac{1}{2} \log 1 + \log 2 + \log 3 + \dots + \frac{1}{2} \log n \\ & \log n! < \left(n + \frac{1}{2}\right) \log n - n + 1 \end{split}$$

Lower limit (middle point):

$$I_n < \frac{1}{8} + \log 2 + \log 3 + \dots + \frac{1}{2} \log n$$
$$\log n! > \left(n + \frac{1}{2}\right) \log n - n + \frac{7}{8}$$

Let $a_n = \log n! - \left(n + \frac{1}{2}\right) \log n + n$. We have

$$\frac{7}{8} < a_n < 1$$

To show that $\{a_n\}$ converges, we need to prove that it's monotonic. Use Taylor series expansion, we have

$$\log \frac{1+t}{1-t} = \log(1+t) - \log(1-t) = 2\sum_{k=0}^{\infty} \frac{1}{2k+1} t^{2k+1}$$

Substitute t by $\frac{1}{2n+1}$, we have

$$\log \frac{n+1}{n} = 2 \sum_{k=0}^{\infty} \frac{1}{2k+1} \left(\frac{1}{2n+1}\right)^{2k+1}$$

Hence,

$$a_n - a_{n+1} = \frac{1}{2}(2n+1)\log\frac{n+1}{n} - 1 = \sum_{k=1}^{\infty} \frac{1}{2k+1} \left(\frac{1}{2n+1}\right)^{2k} > 0$$

Therefore, the sequence $\{a_n\}$ is monotonically decreasing and convergent. Assume that $n! = C \left(\frac{n}{e}\right)^n \sqrt{n}$. We need the following Wallis formula to determine the constant *C*.

$$S_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx$$

= $\int_{0}^{\frac{\pi}{2}} \cos^{n-2} x \, (1 - \sin^{2} x) dx$
= $S_{n-2} + \int_{0}^{\frac{\pi}{2}} \cos^{n-2} x \, (-\sin x) \sin x \, dx$
= $S_{n-2} + \frac{\cos^{n-1} x \sin x}{n-1} \Big|_{0}^{\frac{\pi}{2}} - \frac{1}{n-1} \int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx$
= $S_{n-2} - \frac{1}{n-1} S_{n} \implies \frac{S_{n}}{S_{n-2}} = \frac{n-1}{n}$

Since $S_0 = \frac{\pi}{2}$, and $S_1 = 1$, we have

$$S_{2n} = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2}$$
$$S_{2n-1} = \frac{2n-2}{2n-1} \cdot \frac{2n-4}{2n-3} \cdots \frac{2}{3} \cdot 1$$
$$\implies \frac{S_{2n}}{S_{2n-1}} = \pi n \left[\frac{(2n-1)(2n-3)\cdots 3\cdot 1}{2n(2n-2)\cdots 4\cdot 2} \right]^2$$

Because $\{S_n\}$ is monotonically decreasing, and $\frac{S_n}{S_{n-2}} = \frac{n-1}{n} \sim 1$. We have $\frac{S_{2n}}{S_{2n-1}} \sim 1$. Therefore

$$\sqrt{\pi n} \frac{(2n-1)(2n-3)\cdots 3\cdot 1}{2n(2n-2)\cdots 4\cdot 2} \sim 1$$

Multiply the denominator to both nominator and denominator, we have

$$\sqrt{\pi n} \frac{(2n)!}{(2^n n!)^2} \sim 1$$

Substitute *n*! by $\left(\frac{n}{e}\right)^n \sqrt{n} \cdot C$, we have

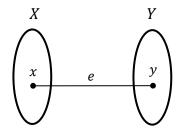
$$\sqrt{\pi n} \frac{\left(\frac{2n}{e}\right)^{2n} \sqrt{2n} \cdot C}{\left(2^n \left(\frac{n}{e}\right)^n \sqrt{n} \cdot C\right)^2} \sim 1 \quad \Longrightarrow \quad C \sim \sqrt{2\pi}$$

Hence, the Stirling's formula $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ is established.

Hall's Theorem: A bipartite graph G(X, Y, E) contains a matching of X if and only if $|N(S)| \ge S$, $\forall S \subseteq X$.

Proof. We prove the theorem by induction on |X|. For |X| = 1, the assertion is true. Now, let

 $|X(G)| = n \ (n \ge 2)$, and assume Hall's theorem holds for all |X| < n. Case 1: $|N_G(S)| \ge |S| + 1$, $\forall S \subset X$



Take an edge $e = xy, x \in X, y \in Y$. Let

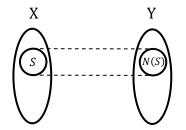
$$G' = G - \{x, y\}$$

Then the condition satisfies:

$$|N_{G'}(S)| \ge S, \quad \forall S \subseteq X - \{x\}$$

Because $|X(G')| = |X - \{x\}| = n - 1 < n$, by the induction hypothesis, G' contains a matching of $X - \{x\}$. Together with the edge *e*, this yields a matching of X.

Case 2: $|N_G(S)| = S$, $\exists S \subset X$



Let

$$G' = S \cup N_G(S)$$

By the induction hypothesis, G' contains a matching M_1 of S. We show that G - G' satisfies the marriage condition by contradiction. Suppose that

$$|N_{G-G'}(S')| < |S'|, \quad \exists S' \subseteq X - S$$

We have

$$|N_G(S' \cup S)| = |N_G(S')| + |N_G(S)| - |N_G(S') \cap N_G(S)| = |N_{G-G'}(S')| + |S| < |S'| + |S|$$
$$= |S' \cup S|$$

which contradicts our assumption. Again, by induction, G - G' contains a matching M_2 of X - S. The union of the two matchings $M_1 \cup M_2$ is a matching of X.

Corollary: *m*-regular bipartite graph can be edge colored by *m* colors. *Proof.* Consider a bipartite graph G(X, Y, E) with $\delta(v) = m, \forall v \in G$. Define $E(S) \coloneqq \{e | e \text{ is incident to a vertex } v \in S\}$,

we have

 $E(S) \subseteq E(N(S)), \quad \forall S \subseteq X.$

Therefore

 $|E(S)| \le |E(N(S))|$ Because |E(S)| = m|S|, and |E(N(S))| = m|N(S)|, we have $m|S| \le m|N(S)|$ $\Rightarrow |N(S)| \ge |S|$

which satisfies Hall's condition, and thus a matching M exists in G. Since the bipartite graph G' = G - M

is also regular with $\delta(v) = m - 1$, $\forall v \in G'$. Therefore we can use the above strategy repeatedly until $\delta(v) = 0$. As a result, we get a total of *m* matching in *G*, each corresponds to a color, hence *G* can be edge colored by *m* colors.

(Prepared by Miao Zhang, May 29, 2011)