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Abstract—The three-stage fault-tolerant Clos network, where extra switch modules exist in the middle stage in case of switch failures,

is widely used in the design of OTN switches. This paper proposes a route assignment algorithm for such Clos networks by solving its

counterpart in edge-coloring problem. Based on complex coloring, a novel edge coloring method, the proposed algorithm possesses

two properties. First, our algorithm can make full use of extra switch modules in the middle stage of Clos network. The extra switch

modules provide additional colors for edge coloring, which help to reduce the running time of the coloring process remarkably. Second,

our algorithm can be implemented in a parallel manner to further shorten the running time. The proposed routing algorithm achieves a

low complexity of Oð
ffiffiffi
N

p ðm�1Þ
m�1þðm� ffiffiffi

N
p ÞlogN logNÞ, whereN is the network size andm is the number of switch modules in the middle stage.

The performance of our algorithm has been verified by extensive simulation experiments.

Index Terms—Route assignment, fault tolerance, Clos network, optical switching, edge coloring, complex coloring
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1 INTRODUCTION

WITH the explosive growth of Internet traffic, large-
scale optical switches become more important [1], [2],

[3]. This is especially true since optical transport network
(OTN) has recently been considered as the mainstream solu-
tion for the wireless front-haul system of 4G/5G networks
[4], [5], [6], [7], [8]. Currently, even for a medium-size urban
network, an optical switch in a centralized baseband pool is
required to switch up to 1,000 macro base station carriers
[9], each of which will provide the bandwidth of 100 Gbps,
according to 5G requirements [8]. Thus, a single optical
switch has to provide throughput greater than 100 Tbps,
when the OTN is used to support 4G/5G networks.

Because they feature good scalability and internally non-
blocking property, Clos networks have been widely adopted
in the construction of large-scale optical switches in OTNs
[10], [11], [12], [13], [14], [15], [16]. For example, Cisco offers a
converged optical service platform, NCS 4,016 [14], in which
the switching modules are organized in a Clos-type configu-
ration. Also, Huawei recently demonstrated a prototype of
Clos networks for the OTN multi-chassis switch cluster [15],
which can support 1 Pbps switching capacity and promises a
bright future for OTN switch applications.

The Clos network is a three-stage switching network con-
sisting of a set of switching modules. In a symmetric Clos

network, denoted by Cðm;n; rÞ, there are r n�m input
modules (IMs) in the input stage, m r� r central modules
(CMs) in the middle stage, and r m� n outputs modules
(OMs) in the output stage. Fig. 1 gives an example of
Cðm;n; rÞ. There is exactly one link between two switching
modules at two adjacent switching stages. Thus, the middle
stage essentially provides m alternative paths for each pair
of IM and OM, and each CM corresponds to one such path.
The non-blocking routing problem in Clos networks is to
assign CMs to the connection requests between the IMs and
the OMs, such that there is no contention: two connections
share the same IM or OM do not pass through the same
CM. It is well-known that the Clos network is rearrangeably
non-blocking (RNB) if and only if there are at least n avail-
able paths for each IM-OM pair, i.e.,m � n.

When some optical switchingmodules break down, due to
device aging or overloading operations [16], [17], [18], [19],
the failure may disconnect multiple connections, leading to
the loss of a large amount of data. For example, each central
module of the OTN switch proposed in [15] is a 324� 324
optical switching module with a line rate of 12.5 Gbps.
If such a module fails, the degradation of throughput is
up to terabits. Therefore, fault tolerance is vital to supply
relief for Clos networks if a failure occurs in practice [16],
[18], [19], [20], [21].

The module failures may occur in different switching
stages. If failures happen in an IM or OM, the input or out-
put ports of the affected connections will be completely dis-
connected from the switching network. The only way to
recover the connections is to replace the broken switching
module with a functional one. However, if a CM fails in a
Clos network Cðm;n; rÞ, where the number of CMs m in the
middle stage is greater than n, the Clos network Cðm;n; rÞ
is still RNB, and can recover the interrupted communica-
tions by reallocating other CMs to those affected connec-
tions. In this paper, we refer to the Clos network Cðm;n; rÞ
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with m > n as a fault-tolerant Clos network, and focus on
how to cope with the CM failures.

There are two methods to configure extra CMs in the
middle stage. In the first method [22], a set of m� n CMs is
idle in the normal state. When a failure happens, the net-
work directly shifts the affected connections to one of these
m� n idle CMs. This method is easy to implement and
requires no additional computation cost to re-route the
affected connections upon failure. However, this method
does not take full advantages of idle CMs, which may help
reduce the complexity of route assignment. Intuitively, the
more CMs in the middle stage, the more alternative paths
the Clos network can use for each input-output pair, and
thus the more flexibility may be introduced to the route
assignment [21]. Therefore, a second method was consid-
ered in previous works [19], [20], [21], where the m CMs
were all employed during the route assignment in the nor-
mal state. However, most of the existing fault-tolerant rout-
ing algorithms [19], [20], [21] still cannot make full use of
such routing flexibility introduced by the extra CMs.

1.1 Overview of Previous Works

Themost efficient sequential route assignment algorithm of a
Clos network is the one reported in [23], of which the time
complexity is Oðnr logmÞ. To reduce the time complexity,
several parallel algorithms were proposed in [24], [25], [26].
For example, parallel algorithms proposed in [25], [26] carry
out conflict-free routing based on the concept of equivalence
class. The time complexity of such parallel algorithms is
Oðlogm� lognrÞ [26]. It is clear that the time complexity of
the above route assignment algorithms increases with the
number of CMs m, which means the classical routing algo-
rithms cannot take full advantage of the flexibility provided
by extra CMs. In general, directly applying classical route
assignment algorithms [23], [24], [25], [26] to the fault-
tolerant Clos networks is not desirable. The following para-
graphs briefly describe several routing algorithms dedicated
to fault-tolerant Clos networks.

The algorithms reported in [19], [20] deal with the route
assignment problem when there are cross-point failures in
some CMs. A normal switching module can be configured
to an arbitrary switching state. When there are cross-point
failures in the module, the number of switching states that

the module can achieve is limited. The algorithm in [19] first
calculates a set of n switching states that the middle stage
should provide according to the connection requests, and
then associates each switching state with a CM if this CM
can implement this switching state. The time complexity of
this routing algorithm is OðjLCjlognrþ ðnrÞ1:5Þ, where jLCj
is the number of broken cross-points in the Clos network.

Another routing algorithm, called FT-DSRR, was devel-
oped in [20]. In this algorithm, each IM independently seeks
the CMs that can be used to establish connections for the
requests that originate from this IM. This algorithm is block-
ing, and not all legitimate requests can be satisfied at the
same time. Thus, the algorithm requires buffers installed in
the CMs and the OMs to avoid contention. In addition, the
time complexity of this algorithm is OðnmÞ, which also
increases with the number of CMsm.

Ref. [21] considered the case, where the CM will be
treated as an unusable module even when there is only one
broken cross-point. In ref. [21], the routing algorithm was
devised based on a specification matrix, in which each row
and each column respectively represent an IM and a CM,
and each entry records the index of the OM that the IM can
reach via the CM. The routing constraint requires that each
OM appears exactly once in each column if the CM assign-
ment is contention-free. Initially, a matrix is randomly gen-
erated, and the algorithm swaps the entries in the same row
iteratively until the matrix is contention-free. Though this
paper points out that extra CMs can reduce the number of
required swaps and thus shorten the running time of the
algorithm, it only analyzes the time complexity of this algo-
rithm when there is no extra CMs, which is Oðnr2Þ.

In summary, the existing algorithms did not fully utilize
the routing flexibility provided by the extra CMs. There is
still room to improve the complexity of route assignment
algorithms for optical switches that are based on three-stage
fault-tolerant Clos networks.

1.2 Summary of our Work

In this paper, we propose a parallel routing algorithm for
fault-tolerant Clos networks that fully utilize the routing
flexibility of redundant optical switch modules to achieve a
low time complexity. The routing problem in a fault-tolerant
Clos network is formulated as an edge coloring of a bipartite
graph with redundant colors. We apply a newly proposed
edge-coloring method [27], called complex coloring, to solve
the coloring problem. As a kind of algebraic method, we
show that complex coloring possesses two attractive features
as follows. First, complex coloring makes full use of redun-
dant colors to shorten the running time of the coloring pro-
cess. Our analysis demonstrates that the greater the number
of redundant colors, the faster the coloring process. Second,
complex coloring is very fast since it can be implemented in
a parallel fashion.

Based on parallel complex coloring, the time complex-
ity of the proposed routing algorithm is on the order of

Oð nðm�1Þ
m�1þðm�nÞlog r log rÞ for Clos network Cðm;n; rÞ. When

we assume n ¼ r and N ¼ nr is the network size, the
time complexity of our algorithm is expressed as

Oð
ffiffiffi
N

p ðm�1Þ
m�1þðm� ffiffiffi

N
p ÞlogN logNÞ. This indicates that our algorithm

can make full use of redundant optical switches to

improve the running speed. Also, such low complexity

Fig. 1. A three-stage Clos network architecture Cðm;n; rÞ.
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guarantee that the network can immediately recover all

interrupted connections when switch failures occur.
The rest of the paper is organized as follows. In Section 2,

we formulate the route assignment problem in the fault-
tolerant Clos network as an edge-coloring problem of bipar-
tite graphs with redundant colors. Next, we briefly describe
complex coloring and its properties. In Section 3, we devise
a parallel algorithm of complex coloring, and demonstrate
how to accelerate the parallel complex coloring process by
redundant colors. In Section 4, we propose a route assign-
ment algorithm for fault-tolerant Clos networks, and show
that our algorithm remarkably outperforms the previous
algorithms in terms of time complexity. Furthermore, we
also address the scalability issues of our parallel algorithm
in this section. Section 5 draws the conclusion of this paper.

2 ROUTE ASSIGNMENT AND PARALLEL COMPLEX

COLORING

The route assignment in fault-tolerant Clos networks can be
formulated as the edge coloring of bipartite graphs [28],
[29], [30]. In this section, to build this equivalence, we first
briefly introduce the route assignment in the fault-tolerant
Clos network. Then, we describe a newly proposed edge
coloring method [27], called complex coloring, and its paral-
lel processing in bipartite graphs [31].

2.1 Route Assignment in Fault-Tolerant Clos
Network

In this paper, we consider a symmetric fault-tolerant Clos
network Cðm;n; rÞ, where m > n. Such Clos networks can
remain RNB even when up to m� n CMs are broken. An
example of the fault-tolerant Clos network is illustrated in

Fig. 2a, where n ¼ r ¼ 3 andm ¼ 4. In this example, the net-
work is fully loaded, since the inputs are all busy. If the
fourth CM fails, three connections will be disconnected.
However, the Clos network can recover the affected connec-
tions, since the other three CMs are still in normal state. For
example, the connection passing through CM 4 in Fig. 2a is
re-routed via CM 1 in Fig. 2b when CM 4 is broken.

The route assignment algorithm is the key to route (or re-
route) the connections in fault-tolerant Clos networks [28],
[29], [30]. As Fig. 2 illustrates, the route assignment of a fault-
tolerant Clos network can be formulated as the edge coloring
of a bipartite multigraph G ¼ ðX[Y;EÞ, in which the vertex
sets X and Y represent the IM set and the OM set, respec-
tively, and each edge in E represents a connection request
from an IM to an OM. LetC be the color set, where each color
inC corresponds to a CM inCðm;n; rÞ. Contention-free rout-
ing in Clos networks requires that any two connections origi-
nated from the same IM or destined for the same OM should
not pass through the same CM, which is consistent with the
constraint of edge coloring in G that two edges incident to
the same vertex should use different colors.

Let D be the maximum degree of G. It is well-known that
a bipartite graph G is D-edge-colorable [32], i.e., the mini-
mum number of colors required to color the bipartite graph
G is D. In the Clos network Cðm;n; rÞ, there are m CMs and
each IM (or OM) has n inputs (or outputs), which implies C
corresponds to a bipartite graph G with D ¼ n and jCj ¼ m.
Since G is n-edge-colorable, n CMs in the middle stage are
sufficient to guarantee that the Clos network Cðm;n; rÞ is
RNB. In a fault-tolerant Clos network, the number of CMs
m is larger than n, which means the corresponding graph
G has redundant colors for edge coloring. As Fig. 2a
illustrates, G has jCj ¼ 4 colors available for edge coloring,
even though D ¼ 3. The graph G with jCj > D is referred to
as a bipartite graph with redundant colors; otherwise, G is
a bipartite graph without redundant colors. We show in
Section 3 that these redundant colors will introduce flexibil-
ity in edge coloring.

2.2 Complex Coloring of Bipartite Graph

The complex coloring proposed in [27] is a kind of algebraic
edge coloring method, in which a fictitious vertex is inserted
in the middle of each edge such that the edge is divided into
two links. As an example, the bipartite graph in Fig. 3a
changes to the graph in Fig. 3b after a fictitious vertex is
inserted in the middle of each edge.

The complex coloring starts coloring the links instead of
the edges. Each vertex randomly selects a color for each link
such that the links incident to this vertex use different colors,
which is called consistent. It is clear that G can be consis-
tently colored by D colors, where D is the maximum degree
of the graph. An example of consistent coloring of Fig. 3a is
given in Fig. 3b. In a consistently colored graph, the two links

Fig. 2. Correspondence between the route assignment in a fault-tolerant
Clos network and the edge coloring of a bipartite graph.

Fig. 3. Complex coloring of a bipartite graphG.
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of each edge may be colored by two different colors. If the
colors of two links are different, the associated edge is called
a variable and denoted as ða; bÞ, otherwise it is called a con-
stant, as Fig. 3b shows. A coloring of a graph is proper if it is
consistent and all edges are constant. Fig. 3c illustrate a
proper coloring of the bipartite graph displayed in Fig. 3a.

A proper coloring of G can be obtained from any initial
consistent coloring by variable elimination. The variable
elimination is achieved by color-exchange operations, which
exchange colors of two links incident to the same vertex. An
example is illustrated in Fig. 4, where a sequence of color
exchanges is performed at the vertexes marked by “�”. In
particular, after two exchanges, a ðr; oÞ variable hit another
ðr; oÞ variable and is eliminated. The color exchange is effec-
tive if it does not increase the number of variables. In complex
coloring, only effective color exchanges are allowed, such
that the increase of the number of variables can be prevented.
For example, the color exchanges are all effective in Fig. 4.

In bipartite graphs, all the variables can be eliminated via
color-exchange operations, since there is no odd cycle [27].
Furthermore, complex coloring of bipartite graphs pos-
sesses the following three powerful strengths [31]:

1) Invariance of color set: The color-exchange operation
does not introduce new colors to the current color-
ing, and thus the color set stays the same from an ini-
tial consistent coloring configuration to a final proper
coloring configuration.

2) Rearrangeability: When new connection requests
arrive or some existing connections needs to be re-
routed due to the failure of optical central modules,
it is only necessary to eliminate the new variables
introduced by the new requests, instead of recolor-
ing the entire bipartite graph.

3) Parallelizability: In a bipartite graphG, vertices in set
X are non-adjacent, and so are vertices in set Y .
Thus, color exchanges can be effective even when
they are simultaneously performed on X, and on Y
alternately. An example of parallel color-exchange
operations is plotted in Fig. 5. In the first iteration,
the vertices x1; x2, and x3 execute color exchanges in
parallel, and then y3 performs color exchanges in the
second iteration. Clearly, this property can remark-
ably improve the efficiency of the edge coloring pro-
cess, since multiple variables may be eliminated at
the same time [31].

Though the parallelizability property can speed up the
variable elimination process, such a parallel process may
introduce deadlock variables that are trapped in infinite
loops and can never be eliminated [31]. For example, the
path passing through x1; y2; x2 and y3 in Fig. 5 forms a ðr; yÞ
cycle containing two ðr; yÞ variables. These two variables
move forward in the same direction in a cycle and thus

have synchronous walks, causing an infinite loop. Such
deadlocks are inherently attributed to the fact that each ver-
tex lacks the global information about the entire graph. For-
tunately, simulation results in [31] show that the number of
remaining variables in G is rare if the parallel processing of
color-exchange operation is executed after OðlogNÞ itera-
tions. For this fact, a stopping rule is introduced in [31] to
halt the parallel variable elimination process after OðlogNÞ
iterations, such that the number of remaining variables can
be smaller than a preset threshold.

3 PARALLEL COMPLEX COLORING WITH

REDUNDANT COLORS

In the bipartite graph counterpart of fault-tolerant Clos net-
works, the number of available colors is greater than its max-
imum degrees. Specifically, each vertex is connected to at
most D edges but have Dþ d available colors. In Section 3.1,
we show that such redundant colors essentially provide a
new way for variable elimination. In Section 3.2, we further
elaborate that such redundant colors can remarkably shorten
the parallel variable elimination process such that the num-
ber of remaining variables can decline to the preset threshold
much faster, which yields a parallel complex coloring algo-
rithmwith redundant colors that Section 3.3 describes.

3.1 New Features of Variable Elimination with
Redundant Colors

In a bipartite graph G with Dþ d colors, the redundant col-
ors essentially provide a new way to eliminate variables. It
is clear that each vertex always has d unused colors, since
there are at most D links attached to this vertex. As a result,
the walk of a variable may terminate on a vertex where no
link of the required color exists to exchange. Fig. 6 illustrates
an example, where the ðr; bÞ variable hits vertex x3 without b
colored link. In this case, the ðr; bÞ variable can be eliminated
by directly replacing the color rwith the unused color b. The
ðr; bÞ variable in Fig. 6 is said to be eliminated via the color-
exchange operation with a don’t care edge.

In a bipartite graph with redundant colors, an ða; bÞ vari-
able is eliminated by either an ða; �Þ variable or a don’t care
edge. These two kinds of elimination events are mutually
exclusive. For an ða; bÞ variable, the condition of hitting a

Fig. 4. Variable elimination via color-exchange operations.

Fig. 5. Parallel processing of color-exchange operations.
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don’t care edge on a vertex is that color a is unused by the
links attached to this vertex, while that of hitting an ða; �Þ
variable is that color a has been already used by the links
attached to this vertex. For example, the ðr; oÞ variable
between x2 and y2 in Fig. 6 meets another ðr; oÞ variable at
y2. In this case, it’s impossible for the ðr; oÞ variable to meet
a don’t care edge at y2 at the same time, since the color red is
used by one link incident to y2.

Also, the features of these two kinds of variable elimina-
tions are quite different. The number of variables declines
with evolution of the variable elimination process, while the
number of don’t care edges does not decrease. The ðr; bÞ vari-
able in Fig. 6 eliminated at vertex x3 is an example. This var-
iable is eliminated by the replacement of color r with color b
at x3. However, this don’t care edge still exists when another
ðr; bÞ variable reaches x3, in which case x3 is a vertex with-
out r colored link.

Therefore, don’t care edges provide a good complementa-
tion during the complete variable elimination process. To
elaborate this point, we perform an ideal analysis. In partic-
ular, we consider the following two parameters:

1) aðtÞ: Variable elimination rate, the ratio of the number
of eliminated variables in the tth iteration to the total
number of variables in this iteration.

2) hðtÞ: Hitting time, the expected number of iterations
needed for a variable to hit another variable or don’t
care edge in the tth iteration. Obviously, hðtÞ is
inversely proportional to aðtÞ.

During the analysis, we consider the following two ideal
assumptions:

A1: Dþ d colors are randomly assigned to links during
the graph initialization, and

A2: elimination rate aðtÞ is a constant awith respect to t.
Since a variable is either eliminated by another variable

or a don’t care edge, the variable elimination rate consists of
the following two mutually exclusive parts:

P1: Probability that the variable is eliminated by a
variable;

P2: Probability that the variable is eliminated by a don’t
care edge.

For the first part, the derivation in [31] shows that the
probability of a variable being eliminated by hitting another
variable in each iteration is 1

a log ðjV jþbÞþc, where a; b; c are con-

stant. An intuitive explanation is that the average path
length in a random graph is on the order of Oðlog jV jÞ [33],
which implies that the average hitting time for a variable to
meet another variable is Oðlog jV jÞ.

For the second part, we consider an ðr; bÞ variable
incident to a vertex x2X with degree D in Fig. 7 and the

color-exchange operation is currently performed at this ver-
tex. For the vertex x, color b has been used, which means
other D� 1 links are colored by D� 1 colors randomly
selected from a set of Dþ d� 1 colors. Hence, the total num-
ber of possible color assignments is Dþd�1

D�1

� �
. If this variable

hits a don’t care edge, color r must be unused by the links
attached to vertex x, as Fig. 7 shows. In this case, other
D� 1 links incident to x are colored by D� 1 colors ran-
domly selected from a set of Dþ d� 2 colors without colors
r and b. In other words, only Dþd�2

D�1

� �
color assignments are

possible. It follows that the probability that a variable hits a
don’t care edge in each iteration is given by

p ¼ Prfhitting a don0t care edgeg ¼
Dþd�2
D�1

� �

Dþd�1
D�1

� � ¼ d

Dþ d� 1
: (1)

Equation (1) clearly indicates that probability p increases
with d, which is attributed to the fact that more redundant
colors lead to more don’t care edges and thus provide more
options for the variable elimination.

Since probabilities P1 and P2 are mutually exclusive, the
elimination rate a is given by

a ¼ 1

a log ðjV j þ bÞ þ c
þ p; (2)

which yields the hitting time

h ¼ 1

a
¼ 1

1
a log ðjV jþbÞþc þ d

Dþd�1

¼ 1

1þ ð1� D�1
Dþd�1Þ½a log ðjV j þ bÞ þ c� ½a log ðjV j þ bÞ þ c�:

(3)

From (2) and (3), its easy to see that the hitting time h
reduces drastically with the increase of the number of
redundant colors d. When d ¼ 0, i.e., there is no redundant
colors in the graph, hitting time h is the maximum, and thus
the elimination rate a is the smallest. In this case, hitting
time h degenerate into Oðlog jV jÞ, the same with that in [31],
which considers the variable elimination in a bipartite
graph Gwith D colors.

3.2 Accelerated Parallel Elimination Process

Because of the increase of the variable elimination rate, the
don’t care edges can accelerate the parallel variable elimination
process. To demonstrate this point, we study the ratio of the
number of variables after t iterations to the number of edges
jEj, which is called variable density and denoted asRðtÞ.

According to our previous work [31], under the ideal
assumptions A1 and A2, variable density RðtÞ is given as
follows:

Fig. 6. Variable elimination via color-exchange operations with a don’t
care edge.

Fig. 7. Illustration of the case where an ðr; bÞ variable hits a don’t care
edge.
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RðtÞ ¼ ð1� aÞtRð0Þ; (4)

For a bipartite graphwith redundant colors, a is given by (2).
Thus, for a	1, from (2) and (4), the expected number of itera-
tions T to achieve a given density � is obtained as follows:

T
 ln �� lnRð0Þ
�a

¼ ðD� 1þ dÞ½a log ðjV j þ bÞ þ c�
D� 1þ d½1þ a log ðjV j þ bÞ þ c� ln

Rð0Þ
�

;

(5)

where a; b, and c are constant. This result implies that, under
the ideal assumptions, the parallel complex coloring with d

redundant colors requires Oð ðD�1þdÞ½a log ðjV jþbÞþc�
D�1þd½1þa log ðjV jþbÞþc�Þ iterations

to achieve a specific variable density �. It is clear that the
redundant colors drastically accelerate the variable elimina-
tion process.

In reality, however, the ideal assumption A2 is not
always satisfied. We carry out extensive simulations under
three different values of d, namely 1, 2, and 8. For each d,
100,000 bipartite graphs with jV j ¼ 128 and D ¼ 32 are ran-
domly generated. The simulation results in Fig. 8 show that
all the variable elimination processes with different ds expe-
rience three phases, according to the behavior of variable
density RðtÞ and elimination rate aðtÞ:
1) Initial phase: R0ðtÞ < 0, a0ðtÞ < 0. In this phase, the

initial variable density is very high and the variables

are more likely to be eliminated. Thus, the rate aðtÞ
is large and the density RðtÞ decreases dramatically.

2) Steady phase: R0ðtÞ < 0, a0ðtÞ ¼ 0. In this phase, var-
iables are scattered over the graph and the elimina-
tion enters a relatively stable phase. The rate aðtÞ is
stabilized and becomes a constant, and the density
RðtÞ drops off with the same slope. As Fig. 8 shows,
this phase is the principal part of the whole process.

3) Deadlock phase: R0ðtÞ ¼ 0, a0ðtÞ ¼ 0. In this phase,
the density RðtÞ remains unchanged.

Fig. 8 clearly indicates that the redundant colors can sub-
stantially speed up the elimination process in practical situa-
tions. In the following, we take the steady phase of the
elimination process as an example to elaborate this point.
When d is large, the number of don’t care edges is large. Also, as
Section 3.1 explains, the number of don’t care edges does not
decrease, though a lot of variables have been eliminated in the
initial phase. These don’t care edges help the elimination proba-
bility aðtÞ to stabilize at a higher value in the steady phase.
For example, aðtÞ in Fig. 8b increases from 0.024 to 0.22 when
d increases from 0 to 8. It follows that the variable densityRðtÞ
declines faster in the steady phase and the duration time of
the steady phase becomes shorterwith the increase of d.

To further demonstrate the advantage of redundant col-
ors, we plot the hitting time h of the steady phase changing
as a function of d in the Fig. 9. It’s clear to see that h dramati-
cally decreases with the increase of d, and the curve matches
with (3) very well.

The parallelizability inherently results in deadlock, as we
explain in Section 2. We thus introduce a stopping rule to
halt the endless parallel process. For the choice of the stop-
ping rule, we only consider the steady phase since the initial
phase is much shorter than the steady state and the dead-
lock phase will be treated in a different way, which will be
discussed in Section 3.3. In the steady phase, the rate aðtÞ is
almost a constant, and the density RðtÞ in the steady phase
can be given according to (4) as follows:

RðtÞ ¼ ð1� aÞt�t1Rðt1Þ; (6)

where t1 and t2 are respectively the start and end time of the
steady phase, and t2½t1; t2�. For a given variable density
�	1, the required number of iterations Ts is given by

Fig. 8. Three phases of parallel complex coloring of a bipartite graph with
different d, where jV j ¼ 128 and D ¼ 32.

Fig. 9. Hitting time h as a function of the number of redundant colors d,
where jV j ¼ 128;D ¼ 32.
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Ts ¼ 1

a
ln
Rðt1Þ
�

þ t1;

¼ ðD� 1þ dÞRðt1Þ½a log ðjV j þ bÞ þ c�
D� 1þ d½1þ a log ðjV j þ bÞ þ c� þ t1;

(7)

where a; b, and c are constant. According to (6), we plot the
dashed line, denoted as ~RðtÞ, in Fig. 8a. The cross-point of
~RðtÞ and RðtÞ ¼ � gives Ts. For example, the stopping time
Ts is marked for ¼ 10�5 in Fig. 8a. As we can see, the elimi-
nation process has already entered the deadlock phase at
the stopping time Ts, which indicates that our selection of
stopping time is conservative for this example.

Though few variables may be left after the stopping time
Ts, don’t care edges can also remarkably reduce the number of
variables entering the deadlock phase. This point is confirmed
by simulation experiments in Fig. 10, of which the simulation
condition is the samewith that of Fig. 8. Fig. 10 plots the distri-
bution of the density of the leftover variables when the paral-
lel color exchanges are iterated Ts times. The simulation
results show that, the density of leftover variables RðTsÞ dra-
matically decreases, evenwhen the number of redundant col-
ors d increases from 0 to 1. For example, only 17.016 percent
experiments for d ¼ 0 do not have deadlock variables, while
the ratio increases to 97.845 and 98.776 percent, respectively
when d ¼ 1 and d ¼ 8. This indicates the parallel elimination
process almost does not introduce deadlocked variables with
the presence of redundant colors.

3.3 Parallel Coloring Algorithm with Redundant
Color

Based on the above discussion, we propose a parallel color-
ing algorithm for a bipartite graph G ¼ ðX[Y;EÞ, of which
the maximum degree is D and the number of available col-
ors is Dþ d. The algorithm starts with a consistent coloring
of graph G using Dþ d colors. During the variable elimina-
tion process, color exchanges are alternately performed on
vertices in set X and then on vertices in set Y . This parallel
procedure is iterated until all variables are eliminated, or

terminated subject to the stopping time. If there are leftover
variables due to deadlock situations, the algorithm elimi-
nates them one-by-one by sequential complex coloring.
Since no odd cycle exists in bipartite graphs, the remaining
variables can all be eliminated and thus a proper coloring
can be obtained [27]. Fig. 11 illustrates the sequential vari-
able elimination of the deadlock situation in Fig. 5. In this
example, all deadlock variables are finally eliminated and a
proper coloring is obtained.

We now present the algorithm Parallel Complex Coloring
with Redundant Colors as Algorithm 1.

Algorithm 1. Parallel Complex Coloring with Redun-
dant Colors

Input: A bipartite graph G ¼ ðX[Y;EÞ, maximum degree D,
color set C with jCj ¼ Dþ d; d > 0, LðxiÞ (or LðyiÞ): the list of
variables incident to vertex xi (or yi), stopping time Ts.

Output:A properly colored graph G.
1: For each vertex in G, choose a random color out of Dþ d col-

ors in C for each of its associated links.
2: For each vertex xi in X, update LðxiÞ and proceed with vari-

able elimination process in parallel: If LðxiÞ is nonempty,
then for each ða; bÞ variable in LðxiÞ, one of the following
operations is executed:

O1: If there is an adjacent link with color a, find it and do
the color-exchange operation.

O2: If there is no adjacent link with color a, replace ða; bÞ
variable with ða; aÞ constant directly.

3: For each vertex yi in Y , do the same procedure as Step 2.
4: Repeat Steps 2-3, until one of the following two conditions is

satisfied:

C1: There is no variable left in graph G.
C2: The predetermined stopping time Ts is up.
5: Eliminate the remaining variables one-by-one via sequential

color-exchange operations.

The complexity of Algorithm 1 is mainly determined by
two parts: parallel processing and sequential processing.
According to the analyses in Section 3.2, the parallel proc-
essing includes Oð D�1þd

D�1þdð1þlog jV jÞ log jV jÞ iterations. In each

iteration, each vertex executes at most D color exchanges.
On the other hand, even if there is deadlocks during the par-
allel processing, the number of deadlocked variables is

Fig. 10. Distribution of remaining variable density, where jV j ¼ 128 and
D ¼ 32.

Fig. 11. Sequential elimination process of remaining variables.
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extremely small, as Fig. 10 displays. It follows that the
complexity of the sequential processing is on the order
of Oðlog jV jÞ [27]. Thus, the total time complexity is

Oð DðD�1þdÞ
D�1þdð1þlog jV jÞ log jV jÞ. It is easy to see that the total time

complexity of the parallel algorithm is small when d > 0,
and increases when d decreases. This implies that the paral-
lel complex coloring algorithm can take advantage of redun-
dant colors.

4 PARALLEL ROUTING ALGORITHMS

In this section, we apply Algorithm 1 in Section 3 to design a
fast routing algorithm for fault-tolerant Clos networks. We
first give a specific description of our routing algorithm for
fault-tolerant Clos networks in Section 4.1, and then a
detailed performance evaluation is presented in Sections 4.2
and 4.3. Specifically, we compare our algorithm with other
routing algorithms in terms of time complexity in Section 4.2,
and study the parallelism of our algorithmwhen the number
of processor changes in Section 4.3.

In the simulation of performance evaluations, we assume
that Clos network is fully loaded, that is, all inputs are busy.
Furthermore, our simulations are implemented in the C++
programming process and all parameters are reasonably set
up according to practical systems. To be more specific, we
assume that these algorithms are running on the commer-
cial central processing units (CPUs), say Intel Xeon Proces-
sor C5000/C3000 Series, which can achieve 20 floating-
point operations per nanosecond (ns) and have been widely
used in Cisco switches [34]. Therefore, the average running
time is calculated as the ratio of the number of floating-point
operations required for a route assignment to 20GFLOPS.

4.1 Parallel Routing Algorithm

We consider a symmetric fault-tolerant Clos network Cðm;
n; rÞ, where m > n. Given a set of connection requests, the
corresponding bipartite graph G ¼ ðX[Y;EÞ is constructed
as follows. The vertex xi in X represents the IM i, the vertex
yj in Y denotes the OM j, and the edge edðxi; yjÞ2E stands
for the dth connection request that is originated from IM i
and destined to OM j, where i; j ¼ 1; 2; . . .; k and d ¼ 1;
2; . . .; n. An example of a corresponding bipartite graph of
Cð4; 3; 3Þ in Fig. 2a is shown in Fig. 12. For instance, e2ðx2;
y2Þ represents the second connection request from IM 2 des-
tined to OM 2. Let C ¼ fc1; c2; . . .; cmg be the set of colors,
each of which corresponds to a CM in the middle stage. For
example, as Fig. 12 shows, the edge e1ðx2; y3Þ is colored by
color c1 (red), which indicates that a connection request
from IM 2 is connected to OM 3 through the first central
module, as shown in Fig. 2a.

The route assignment in a fault-tolerant Clos network is
to provide an available optical switch for connecting each
connection request. To accomplish this goal, the routing
algorithm starts with a bipartite graph, which is constructed
from a set of connection requests inputted to the fault-
tolerant Clos network. Next, the algorithm carries out
Algorithm 1 such that a proper coloring can be obtained as
fast as possible. After a properly colored bipartite graph is
obtained, edges with the same color constitute a matching,
which is mapped to a connection pattern of the correspond-
ing CM. The routing algorithm for fault-tolerant Clos net-
works is described as follows.

Step 1 Initialization: Each IM and each OM implement the
graph formulation, according to the current connec-
tion requests.

Step 2 Perform Algorithm 1, and return a proper coloring of
the bipartite graph.

Step 3 All connections are established according to the
properly colored bipartite graph G.

Since all deadlock variables can be eliminated by the
sequential complex coloring, all connection requests in fault-
tolerant Clos networks can be assigned a set of conflict-free
paths determined by the coloring of the returned bipartite
graphG.

Fig. 13 shows an example to illustrate the procedure of
our routing algorithm. This example is derived from the
fault-tolerant Clos network shown in Fig. 2a. A consistent

Fig. 12. Graph formulation of call requests for the fault-tolerant Clos net-
work shown in Fig. 2a.

Fig. 13. Coloring process of a bipartite graph.
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coloring of its corresponding bipartite graph is displayed in
Fig. 13a. Since the number of CMs in Fig. 2a is 4, this 3-
edge-colorable bipartite graph is initialized with 4 different
colors. To eliminate the variables, simultaneous color-
exchange operations are executed on vertexes x1; x2; x3 and
y1; y2; y3 alternatively, as shown in Fig. 13b. In this case, two
deadlock variables are left, which can be eliminated one-by-
one using sequential complex coloring, as Fig. 13c shows.
The resulting coloring is proper as displayed in Fig. 12.
Thus, all connections are established according to this
proper coloring shown in Fig. 2a.

A fault-tolerant routing algorithm should also provide a
quick recovery for the switching systemduring switch faults.
That is, when one or more optical central modules go down,
the routing algorithm should be able to re-route the affected
connection requests via other fault-free paths, as soon as pos-
sible. Due to the rearrangeability property of complex color-
ing, as mentioned in Section 2.2, our routing algorithm
provides a powerful re-routing mechanism for fault-tolerant
Clos networks, when some optical CMs are out of order.
Instead of recoloring the whole bipartite graph, colors
assigned to the removed edges are released and the new
added edges are initialized with the available colors. If the

new consistent coloring contains any variables, they can all
be eliminated within their corresponding two-colored sub-
graphs by parallel processing of color-exchange operations.

An example is plotted in Fig. 14 to illustrate the re-route
process. Fig. 14a shows the previous coloring of the Clos
network. Assume that the fourth optical central module
breaks down at this moment. Thus, the corresponding c4
(orange) is no longer available and all edges colored by c4 in
Fig. 14a, which are e1ðx1; y2Þ and e1ðx2; y3Þ, should be recol-
ored by other available colors. Fig. 14b presents a new con-
sistent coloring of these two edges. Most of the time, new
variables will be introduced and can be eliminated by color
exchanges shown in Fig. 14c. After that, a renewed proper
coloring is obtained in Fig. 14d and thus new connections
are established accordingly, as dotted lines in Fig. 14e.

4.2 Complexity Performance

The complexity of our routing algorithm is mainly domi-
nated by the running time of Algorithm 1 whose complexity

is Oð DðD�1þdÞ
D�1þdð1þlog jV jÞ log jV jÞ, as we show in Section 3.3. Note

that D ¼ n; d ¼ m� n and jV j ¼ 2r in the fault-tolerant
Clos network Cðm;n; rÞ under consideration. The total run-
ning time of our routing algorithm is on the order of

Oð nðm�1Þ
m�1þðm�nÞlog r log rÞ. Note that if n ¼ r and N ¼ nr is the

network size, the time complexity of our algorithm is

Oð
ffiffiffi
N

p ðm�1Þ
m�1þðm� ffiffiffi

N
p ÞlogNÞ logNÞ.

Table 1 presents a complexity comparison of our work
and other routing algorithms. As this table shows, our rout-
ing algorithm achieves the lowest complexity without con-
straints. More importantly, our algorithm is the only one that
not only makes a full use of CMs but also gives an explicit
relationship between the extra CMs and time complexity.

To visualize the comparison of time complexity, we com-
pare our algorithm with two routing algorithms, Karol’s
algorithm [24] and the new decomposition algorithm [21],
through simulation. Karol’s algorithm [24] is simple and
can be implemented in a parallel manner. At the worst case,
it requires OðrÞ iterations and OðmÞ operations in each itera-
tion. Thus, the complexity of Karol’s algorithm is OðmrÞ.
Meanwhile, the new decomposition algorithm in [21] can
only be operated in a sequential manner and the complexity
is Oðnr2Þ at the worst case.

Fig. 15 displays the simulation results of the running
time of routing algorithms with respect to the number of
IMs (or OMs) r, where n ¼ 32 andm ¼ 33. It is clear that the
required running time of our algorithm increases very
slowly, compared to the other two algorithms. Specifically,
the running time of our algorithm goes up from 10.28
to 19.51 ns for computing a route assignment when the IMs

Fig. 14. Re-coloring process of a bipartite graph.

TABLE 1
Comparison of Routing Algorithms for the Fault-Tolerant Clos Network Cðm;n; rÞ

Research Work Time Complexity Parallel Methodology

Karol’s [24] OðmrÞ Yes Heuristic
Lee and Liew’s [26] Oðlogm�lognrÞ (m is an integer power of two) Yes Equivalence class
Generic Rearrangement Routing [19] OðjLCjlognrþ ðnrÞ1:5Þ (jLCj: #of faults) No Maximummatching
FT-DSRR [20] OðnmÞ Yes Heuristic
Decomposition algorithm [21] Oðnr2Þwhenm ¼ n No Matrix decomposition
Our work Oð nðm�1Þ

m�1þðm�nÞlog rÞ log rÞ Yes Complex coloring
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(or OMs) r increases from 16 to 128, while that of Karol’s
algorithm increases from 17.43 to 140.19 ns and that of the
new decomposition algorithm from 14.73 to 180.17 ns.

Fig. 16 compares the running time of our algorithm and
the other two algorithms with respect to the number of opti-
cal CMs when r ¼ 128 and n ¼ 32. Fig. 16 shows that the
running time of our algorithm declines dramatically from
26.17 to 3.62 ns with the increase in the redundant CMs.
Meanwhile, the running time of Karol’s algorithm slightly
increases with the number of extra CMs. This implies that
more CMs even burden the routing process for Karol’s algo-
rithm. The new decomposition algorithm [21] shows the
same property as ours that its running time decreases when
the extra CMs are increased. However, this algorithm still
costs a much longer running time than ours with all values
of m, which is attributed to the fact this algorithm is a
sequential algorithm.

In addition, we also make comparisons of existing algo-
rithms in terms of the recovery time of interrupted connec-
tions when CM failures occur. The recovery time of an
interrupted connection defined herein is the time from this
connection is disconnected due to a CM failure to the time
that the connection is re-established. In our simulation, we
consider the Clos network Cð63; 32; 128Þ with 31 extra CMs
as an example, in which each CM may fail with an equal
probability, and the total number of faulty CMs should be
less than 32 such that all possible interrupted connections

can be recovered. Due to the rearrangeability of complex
coloring, our algorithm uniformly outperforms the other
two existing algorithms, as Fig. 17 shows.

4.3 Scalability of Parallelism

The complexity analyses offered in Sections 3 and 4.2
assume that each IM/OM is equipped with a processor to
fully parallelize our algorithm. In this section, we study the
parallelizability of our algorithm by varying the number of
processors, denoted by u. Specifically, we consider two scal-
ability criterions defined as follows:

1) Strong scaling [35]: refers to the running time of a
parallel algorithm versus the number of processors u
for a fixed problem size. Ideally, if an algorithm
assigns an evenly divided computation task with a
fixed size to u parallel processors, then the strong
scaling implies that the running time will be
inversely proportional to the number of processors
u, as the dotted link in Fig. 18a shows.

2) Weak scaling [36]: refers to the running time of a par-
allel algorithm versus the number of processors u for
a constant amount of work per processor. Ideally, u
parallel processors can solve a problem that is u
times bigger in the same amount of time for any u.
That is, the weak scaling implies that the running
time of solving a u times bigger problem should be a
constant when u grows up, as the dotted line in
Fig. 19 displays.

In the following, we evaluate our algorithm in respect to
these two types of scalability criterions.

4.3.1 Strong Scaling

To investigate the strong scaling aspect of our algorithm, we
take the Clos network Cð33; 32; 128Þ as an example. We
assume that all the inputs are busy such that the scale of the
route assignment problem is fixed. We increase the number
of processors u from 1 to 128 in the simulation. Clearly, when
u < 128, multiple IMs/OMs have to share one processor and
thus their color exchange operations can only be imple-
mented in a sequential manner.When u ¼ 128, our algorithm
is completely parallelized and the running time isminimized.

As expected, the simulation result in Fig. 18a displays
that the running time of our algorithm decreases as the

Fig. 15. Running time comparison of the routing algorithms for comput-
ing one route assignment for n ¼ 32 andm ¼ 33.

Fig. 16. Running time comparison of the routing algorithms for comput-
ing one route assignment with r ¼ 128 and n ¼ 32.

Fig. 17. Recovery time of different routing algorithms when there are CM
failures in Cð63; 32; 128Þ.
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number of processors u grows. However, the decline rate
is slower than 1=u, the ideal decline rate. In particular, the
gap between two curves widens with the growth of u. The
running time discrepancy is due to the fact that the num-
ber of color exchanges carried out by different processors
in each iteration is not evenly distributed, while the run-
ning time of each iteration is determined by the processor
with the maximum workload. The number of color excha-
nges of each IM/OM is actually a random variable ranging
from 0 to 32 in each iteration. When u is small, a number of
IMs/OMs share one processor and the number of color
exchanges of a processor is the sum of that of these
IMs/OMs. In this case, the unevenness of workload
among processors is smoothed out. On the other hand, if a
dedicated processor is used by each individual IM/OM
when u is large, then the unevenness of workload among
processors can be significant. As Fig. 18b shows, this point
is illustrated by the two workload distributions for u ¼ 8
and 64, respectively.

4.3.2 Weak Scaling

As for the weak scaling aspect, we implement our algorithm
on a Clos network where: a) the number of ports of each
IM/OM input n ¼ 32; b) the number of CMs m ¼ 33; and c)
each IM/OM has k processors. As the number of IMs/OMs
r increases from 16 to 128, the total number of processors u
will increase accordingly. When r ¼ 16, each processor car-
ries out 48 iterations. As we described in Section 3, the

number of iterations is on the order of Oðlog rÞ for a fixed n
and m. Thus, to keep the workload of each processor
unchanged when r increases, we should install k ¼ Oðlog rÞ
processors in each IM/OM. As Fig. 19 shows, the run-
ning time of our algorithm is a logarithmic function of u,
instead of a constant such as in the ideal case. Since dif-
ferent iterations of our algorithm are running in a
sequential manner, though we installed Oðlog rÞ process-
ors on each IM/OM, they cannot be fully used in paral-
lel. As a result, when u increases with r, the running
time increases accordingly.

5 CONCLUSIONS

In this paper, we study the route assignment in a fault-
tolerant Clos network, which is the basic component of OTN
switches. This route assignment problem can be formulated
as an edge-coloring problem of a bipartite graph. Based on a
new algebraic edge coloring method, called complex color-
ing, we propose a parallel and distributed routing algorithm.
Extra switch modules in the middle stage of fault-tolerance
Clos networks provide redundant colors for the edge color-
ing. Because of those redundant colors, a new feature arises
that don’t care edges are spread on each vertex of the graph
and provide a good complementation for variable elimina-
tion, which helps to produce a highly expeditious variable
elimination process. The time complexity of our routing

algorithm is on the order of Oð
ffiffiffi
N

p ðm�1Þ
m�1þðm� ffiffiffi

N
p ÞlogNÞ logNÞ for a

fault-tolerant Clos network with the size of N ports and m
CMs. As the number of extra switch modules m� ffiffiffiffiffi

N
p

increases, the time complexity of our algorithm can be sub-
stantially improved along with the reliability of the switch-
ing systems. Furthermore, our algorithm can provide a quick
recovery from a faulty system.
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