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Abstract. In this paper, we analyze the delay performance of queueing sys-

tems in which the service rate varies with time and the number of service states
may be infinite. Except in some simple special cases, in general, the queueing

model with varying service rate is mathematically intractable. Motivated by

the P-K formula for M/G/1 queue, we developed a limiting analysis approach
based on the connection between the fluctuation of service rate and the mean

queue length. Considering the two extreme service rates, we provide a lower
bound and upper bound of mean queue length. Furthermore, an approximate

mean queue length formula is derived from the convex combination of these two

bounds. The accuracy of our approximation has been confirmed by extensive
simulation studies with different system parameters. We also verified that all

limiting cases of the system behavior are consistent with the predictions made

by our formula.

1. Introduction. In many newly emerging communication services, such as peer-
to-peer (P2P) video streaming [10], file sharing [5], and cloud computing, both jobs
and servers arrive and depart randomly. Thus, the number of available servers seen
by a specific job arrival is a random variable, and the service rate for this job is time
varying. To explore the behavior of this kind of service systems, the performance
analysis of modern communication networks calls for a new kind of queueing model
with varying service rate [11][19][15].

In almost all previously published works [7][12][3][6], queueing systems with time
varying service rate were modeled as a single server queue with a finite number
of service states, in which the state transition of the server can be described as a
continuous-time Markov chain. They are solvable if the number of service states
is small, say only two or three states, such as the model of a multi-rate wireless
channel. However, those methods are totally failed when the number of service
states is large or even infinite.
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The queueing system with a large number of service states is commonly seen in,
for example, volunteer computing [1], also known as public-resource computing or
peer-to-peer computing, which uses the spare computing power belonging to general
public to perform scientific supercomputing tasks [4]. In this kind of systems, a
supercomputing task is divided into a large number of small subtasks, which are
then spread to all active volunteers around the world for parallel calculation. Thus,
the total calculation (or service) capacity is the sum of the power of all the active
volunteers, the number of which however may change over the time during such
parallel process. The active volunteers can freely turn off the hosts and generate
useless results, which reduces the service capacity. On the other hand, the volunteers
may randomly join or rejoin the calculation for more assigned subtasks. When
the computation of a subtask is completed, the volunteer sends back the result to
the server [2]. Treating each supercomputing task as a job, we can consider the
volunteer computing system as a kind of queueing system with multiple service
states. It was reported in [20] that the number of volunteers involved in a project
can even be larger than 15,000,000. This implies that the service capacity of the
volunteer computing system could have a huge number of service states.

The major obstacle to analyzing the queueing model with varying service rate is
the dependency on service times among different customers. In response to this is-
sue, [12] introduced the concept of start-service probability, which provides the basis
of the generalized P-K formula for two-state Markov channels derived in [7]. De-
spite that, the similar approach based on start-service probability is mathematically
intractable for the queueing model with infinite number of states. Nevertheless, in
this paper, based on the relationship between mean queue length and service rate
variance, we provide a methodology to estimate the mean queue length of queueing
systems with infinite number of service states.

1.1. Previous work. The queuing model with variable service rate is an important
analytical tool in studying multi-rate communication systems or computing systems.
[16] and [14] investigated the behavior of power-aware servers in data centers, where
the service rate of the server changes proportionally with the number of jobs waiting
in the buffer. In particular, [16] considered the case where jobs arrive at the server
in batches, and [14] studied the case where blocked jobs leave the server and retry
after retrial times. [3] first introduced the two-state queueing model of a wireless
channel. [6] derived the mean delay for the system with a two-state server, in
which one of the service rates is zero. To cope with the dependencies among service
times, a novel approach based on conditional moments of service time was proposed
by [12]. However, their analysis is incomplete because the required start-service
probabilities are only available for some extreme cases. The complete start-service
probabilities and the closed-form mean delay formula for general two-state queueing
model were derived in [7], which was extended to three-state queueing model by [18].
A matrix-geometric method for multi-state service process was developed in [13],
which only provides numerical results and lacks of physical insight.

A different kind of queuing model with variable service rate is multi-server queu-
ing system, which possesses two features: different servers can serve different jobs in
parallel, and the number of servers in the system varies over the time. For example,
usage problem of multiple service channels in broadband integrated services digital
network (B-ISDN) [11] and transmission behavior of wireless channels in multiple-
input-multiple-output (MIMO) systems [19], long term evolution-orthogonal fre-
quency division multiplexing (LTE-OFDM) systems [15], or computer systems sub-
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ject to technical obstacles [17] are such kind of multi-server queues with variable
service rate. However, the number of servers in these models is limited and usually
very small.

1.2. Our approach and contribution. In this paper, based on the connection
between the fluctuation of service rate and the mean queue length, we provide
two bounds of mean queue length, and derive an approximate mean queue length
formula for the queueing model. Our methodology and results are summarized as
follows:

1. From simulation, we observe that mean queue length is increasing with the
variance of the service rate when keeping service capacity constant. Based
on this relationship, we provide two delay bounds for our queueing model
by considering the two limiting cases of service rate fluctuation. When the
variance of service rate approaches zero, the mean queue length reaches the
lower bound. When the variance approaches infinity, the mean queue length
reaches the upper bound.

2. From the convex combination of the lower bound and upper bound, we derive
an approximate mean queue length formula. The accuracy of our approxima-
tion has been verified by extensive simulations, and all limiting cases of the
model behavior agree with the predictions made by the formula.

The limiting analysis and approximate estimation of mean queue length devel-
oped for our queueing model can be extended and applied to other queueing systems
with varying service rates. The innovative approaches proposed in this paper that
are of particular interest include the extreme analysis of the service rate fluctu-
ations, and the technique of approximate estimation based on conditional mean
queue length and convex combination of extreme bounds.

The rest of the paper is organized as follows. In Section 2, we describe the
queueing model and derive the differential equation associated with the number of
jobs and number of servers in the system. A simple relationship between these two
numbers is obtained from the differential equation. The stability condition of the
queueing model is also provided in this section. In Section 3, we demonstrate the
connection between the service rate fluctuation and the mean queue length, and
provide two bounds of mean queue length. In Section 4, based on the conditional
mean queue length and the convex combination of the two bounds, we derive an
approximate mean queue length formula, and verify the accuracy of our approx-
imation by using extensive simulations and limiting analysis. Section 5 draws a
conclusion.

2. Markov Chain of the queueing model.

2.1. System description. In this section, we consider a queueing system, such as
the volunteer computing system, in which each job is served in parallel by a large
number of servers and the servers may independently and randomly arrive and
depart during the service. We assume that the server arrival process {ns(t), t ≥ 0}
is a Poisson process with rate λs, and the system is homogeneous, meaning that all
servers are independent and identical. Also, the lifetime of a server is exponentially
distributed with mean 1

µs
, and the service rate of each server is µc jobs per unit

of time. As Fig. 1 shows, the continuous time Markov chain of the server process
can be viewed as an M/M/∞ queue. In steady state, it is easy to show that the
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number of servers in the system, defined as ns = lim
t→∞

ns(t), is a Poisson random

variable with parameter ρs = λs

µs
.

0 1 2 n  

Figure 1. The continuous time Markov chain of the server process.

In the queueing model under consideration, the user can only process the down-
load jobs one-by-one in a first-in-first-out (FIFO) manner. Furthermore, we assume
that the job arrival process {nc(t), t ≥ 0} is also a Poisson process with rate λc,
which is independent of the server process. The service of jobs waiting in line fol-
lows first-come, first-served (FCFS) policy. At any instant of time, only one job will
be simultaneously served by all servers. Therefore, the job service time depends on
the number of servers in the system. If the number of servers is a constant within
the service time of a job, then the job service time is exponentially distributed.
However, as the number of servers may change within the service time of a job, the
exact job service time distribution is unknown. Since the service times of jobs are
dependent, the Kendall’s notation of queueing systems cannot be extended to the
queueing model, which is characterized by the following set of parameters:

• Job arrival rate: λc,
Service rate of one server: µc,
ρc = λc

µc
.

• Server arrival rate: λs,
Mean server lifetime: 1

µs
,

ρs = λs

µs
.

Furthermore, we define the following notations used throughout this paper.

• ns(t): number of servers at time t,
ns = lim

t→∞
ns(t): Poisson random variable of server number with parameter ρs

when the system is in steady state.
• nc(t): number of jobs at time t,
nc = lim

t→∞
nc(t): random variable of job number when the system is in steady

state.
• µ(t) = ns(t)µc: instantaneous service rate at time t,
µ = lim

t→∞
µ(t): random variable of service rate when system is in steady state.

2.2. Continuous-time Markov chain. According to the previous description,
Fig. 2 shows the continuous-time Markov chain of the queueing model with state
space {(i, j), i = 0, 1, 2, . . . , j = 0, 1, 2, . . . }, where i is the number of jobs and j is
the number of servers in the system in steady state.

Let pi,j denote the steady state probability that the system is in state (i, j), that
is

pi,j = Pr{nc = i, ns = j}, (1)

where i = 0, 1, . . . is the number of jobs and j = 0, 1, . . . is the number of servers.
From the state transition diagram shown in Fig. 2, we directly obtain the following
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Figure 2. The continuous-time Markov chain of the queueing model.

set of balance equations:

(λs + λc)p0,0 = µsp0,1 i = 0, j = 0, (2a)

(λs + λc)pi,0 = λcpi−1,0 + µspi,1 i ≥ 1, j = 0, (2b)

(λs + λc + jµs)p0,j = λsp0,j−1 + jµcp1,j + (j + 1)µsp0,j+1 i = 0, j ≥ 1, (2c)

(λs + λc + jµs + jµc)pi,j = λspi,j−1 + λcpi−1,j + jµcpi+1,j + (j + 1)µspi,j+1

i ≥ 1, j ≥ 1. (2d)

Define the following generating function of pi,j :

F (z1, z2) =

∞∑
i=0

∞∑
j=0

pi,jz
i
1z
j
2 |z1| ≤ 1, |z2| ≤ 1. (3)

From the set of balance equations (2), we can derive the following differential equa-
tion of the generating function F (z1, z2):

(λc − z1λc + λs − z2λs)F (z1, z2) = µs(1− z2)
∂F (z1, z2)

∂z2

+z2µc(
1

z1
− 1)

∂F (z1, z2)

∂z2

+(1− 1

z1
)z2µc

∂F (0, z2)

∂z2
. (4)

Unfortunately, this Markov chain is irreversible. We know from [8] that there
is no systematic way for solving irreversible Markov chain, and only some special
cases can be solved in closed form. To the best of our knowledge, solving this
differential equation to obtain a closed-form solution of F (z1, z2) is mathematically
intractable. That is, we cannot directly obtain the mean queue length of the system
from (4). Nevertheless, this differential equation still provides us with some useful
information regarding the performance of the queueing model.

First, applying ∂
∂z1

to equation (4) and then inserting z1 = z2 = 1, we obtain:

E[ns] = ρc +
∂F (0, z2)

∂z2
|z2=1. (5)
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Similarly, applying ∂2

∂z21
to equation (4) and then inserting z1 = z2 = 1, we obtain:

ρcE[nc] = E[nsnc]− E[ns] +
∂F (0, z2)

∂z2
|z2=1. (6)

Combining (5) and (6), we have

ρcE[nc] = E[nsnc]− ρc. (7)

Since the number of jobs nc is correlated with the number of servers ns, the mean
queue length of jobs E[nc] remains unsolvable from (7).

From the balance equations of the Markov chain separated by the dashed line
shown in Fig. 2, we have

λc

∞∑
j=0

pn−1,j =

∞∑
j=0

jµcpn,j . (8)

Summing (8) over all n ≥ 1, we have

λc =

∞∑
j=0

jµc(Pr{ns = j} − p0,j). (9)

Define µ̄ =
∑∞
j=0 jµcPr{ns = j} = ρsµc as the capacity of our queueing model.

From (9), we have

λc = µ̄−
∞∑
j=0

jµcp0,j < µ̄, (10a)

or equivalently,

ρc < ρs, (10b)

which gives rise to the stability condition that the job arrival rate λc is less than
the capacity of the system, otherwise the system will be unstable and the queue
length will approach to infinite.

3. Service rate fluctuation and delay bound. For our infinite-state queuing
model, the lack of service time distribution and the dependency among service times
of different jobs are major obstacles for deriving the mean queue length of jobs. The
only known information related to the service time is the Poisson distribution of the
number of servers, which determines the service rate distribution. In this section,
we first investigate the influence of service rate fluctuations on the mean queue
length of jobs, and then derive the mean queue lengths by considering two limiting
cases of service rate.

3.1. Influence of service rate fluctuation. In our queueing model, the number
of active servers is a random variable and the service rate fluctuates over the time.
Given that the number of servers ns is a Poisson random variable with parameter
ρs, we immediately obtain the following parameters related to the number of servers
and service rate:

• Average number of servers: E[ns] = ρs = λs

µs
,

• Standard deviation of server number: σ[ns] =
√
ρs,

• System capacity: µ̄ = E[µ] = ρsµc,
• Standard deviation of service rate: σ[µ] = µc

√
ρs =

√
µ̄µc.
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(a) µc = 0.1 (b) µc = 1

Figure 3. The fluctuation of service rate µ over the time with
parameter µc

µs
= 10, λs = 10.

If we keep parameter µc

µs
and λs constant and only change the value of µc, the

service capacity would be a constant but the standard deviation σ[µ] =
√
µ̄µc

increases with µc. For example, if both parameters µc

µs
= 10 and λs = 10 are

fixed, the service capacity µ̄ equals a constant 100. Fig. 3 demonstrates two cases:
µc = 0.1 in Fig. 3(a) and µc = 1 in Fig. 3(b). It is obvious that the service rate
fluctuates more in (b) with larger µc. Since a larger µc and µs means each server
has a relatively large unit service rate and the number of server is small. In this
case, the arrival or departure of a server will lead to a larger change in the service
rate than that of a smaller µc and µs. On the other hand, when both µc and µs are
small, each server has a small unit service rate but the number of servers is large.
Therefore, an arrival or departure of a single server hardly influences the service
rate, which is the reason why the service rate is more static in Fig. 3(a).

Intuitively, for a fixed capacity µ̄, both the mean and variance of service time
will increase with respect to the fluctuation of service rate. Our simulation results
clearly verify this property. As Fig. 4 shows, as the service capacity is fixed at
µ̄ = ρsµc = 100, both the first and second moments of the service time increase
with the variance of service rate σ2[µ] = µ̄µc, especially when ρc

ρs
is large.

In a queueing system with a fixed arrival rate λ, the mean queue length would
monotonically increase with both the mean and variance of the service time. The
best example to illustrate this property is the well-known P-K formula of M/G/1
queue[9]:

L = ρ+
λ2E[S2]

2(1− ρ)
. (11)

Despite that the service times are dependent random variables, it should remain to
be true that the mean queue length is monotonically increasing with both the mean
and variance of the service time. Thus, the mean queue length should also increase
with the variance of service rate when the capacity µ̄ is fixed. To confirm that this
property holds , we first study the mean queue length under the two limiting cases
of the variance σ2[µ] = µ̄µc of service rate: when µc → 0 and when µc →∞.

3.2. Limiting analysis of mean queue length. For a fixed mean service rate
µ̄ = ρsµc = λsµc

µs
, the limiting case µc → 0, while keeping both parameters µc

µs
and
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Figure 4. The first and second moments of service time increase
with the variance of the service rate.

λs constant, implies µs → 0 and ρs → ∞. The physical meaning of the queueing
model operated under this scenario can be interpreted as follows:

• ρs →∞ implies that the average number of servers is very large,
• µs → 0 implies that the average lifetime of a server 1

µs
is very long,

• µc → 0 implies that the capacity of each server, in terms of number of jobs
served per unit of time, is very small.

Figure 5. Service rate becomes a constant when system reaches equilibrium.

Fig. 5 illustrates this scenario, there is a large number of servers, and it seems
that these servers always stay in the system because of their extremely long lifetime.
However, the service rate (capacity) of each server is very small. Since the number
of servers is too large to be effected by the number of arrivals or departures, the
aggregate service rate µ = nsµc should converge to the constant rate µ̄ = ρsµc
in equilibrium. Thus, the system behaves like a single server queue with Poisson
arrival rate λc. The mean queue length under this limiting scenario is derived in
the following theorem.

Theorem 3.1. The mean queue length L approaches to the following limit:

L1 = lim
µc,µs→0

L =
λc

µ̄− λc
,

when both µc, µs → 0 while keeping µc

µs
and λs constant.
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Proof. When µc → 0, the standard deviation of service rate σ[µ] =
√
µ̄µc → 0.

From Chebyshev’s inequality, we have

Pr{|µ− µ̄| ≥ ε} ≤ E[(µ− µ̄)2]

ε2
=
µcµ̄

ε2
→ 0, as µc → 0, (12)

which means the service rate µ = nsµc converges to the mean µ̄ = ρsµc with
probability 1. It follows that

− εE[nc] ≤ E[(µ− µ̄)nc] ≤ εE[nc], as µc → 0. (13)

Since the stability condition implies the mean queue length is finite, i.e. E[nc] <∞
and the parameter ε > 0 can be arbitrarily small, therefore

lim
µc,µs→0

E[(µ− µ̄)nc] = 0. (14)

Hence, we have
lim

µc,µs→0
E[µnc] = µ̄E[nc], (15a)

or equivalently,
lim

µc,µs→0
E[nsnc] = ρsE[nc]. (15b)

Combining equation (7) and (15b), the lower bound of queue length is given by

L1 = lim
µc,µs→0

E[nc] =
λc

µ̄− λc
=

ρc
ρc − ρs

. (16)

The formula L1 given in the above theorem is exactly the mean queue length of
M/M/1 queue with arrival rate λc and service rate µ̄. Since the mean queue length
increases with the fluctuation of the service rate, L1becomes a lower bound of the
mean queue length L that corresponds to the limiting case σ[µ] =

√
µ̄µc → 0.

In contrast, for a fixed mean service rate µ̄ = ρsµc = λsµc

µs
, the limiting case

µc →∞, while keeping both parameters µc

µs
and λs constant, implies µs →∞ and

ρs → 0. The physical meaning of the queueing model operated under this scenario
can be interpreted as follows:

• ρs → 0 implies that the average number of servers is very small,
• µs →∞ implies that the average lifetime of a server 1

µs
is very short,

• µc → ∞ implies that the capacity of each server, in terms of the number of
jobs served per unit of time, is very large.

Figure 6. The two-state extreme scenario.

Fig. 6 illustrates this extreme scenario. The probability that there are two or
more servers co-existing in the system is negligible because the lifetime of a server is
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so short. The only server in the system has a very large service rate (capacity) but
a very short lifetime; thus, the system sometimes could be out of servers. Therefore,
in this extreme scenario, our queueing model can be regarded as a queuing system
with a two-state server, which is available in one state with a very large service rate
µc but absent in the other state. The mean queue length of the system under this
extreme scenario is derived in the following theorem.

Theorem 3.2. The mean queue length L approaches to the following limit:

L2 = lim
µc,µs→0

L = (1 +
µc
µs

)
λc

µ̄− λc
,

when both µc, µs →∞ while keeping µc

µs
and λs constant.

Proof. When µc → ∞, since the number of servers ns follows Poisson distribution
with parameter ρs, we have

Pr{ns = 0} = 1− ρs + o(ρ2
s), (17a)

Pr{ns = 1} = ρs + o(ρ2
s), (17b)

Pr{ns ≥ 2} = o(ρ2
s). (17c)

Since the probability that the number of servers is larger than 1 is negligible as
ρs approaches 0, which implies pi,j = 0 for j ≥ 2 . Therefore, our queueing model
will degenerate to a queueing model with a two-state server. The continuous time
Markov chain depicted in Fig. 7 illustrates the transition diagram of the two service
states.

0

s


s


c


Figure 7. The transition diagram of the two service states.

A complete analysis of the queueing system with a two-state server is studied in
[7][6]. The generating functions of the number of jobs at server state 0 and state 1
are respectively given by equation (8) in p.3533 of [7] as follows:

G0(z) =

∞∑
i=0

pi,0z
i =

( λsµc

λs+µs
− λc)µs

z2λ2
c − zλc(λs + µs + λc + µc) + µc(λs + λc)

, (18a)

G1(z) =

∞∑
i=0

pi,1z
i = −

( λsµc

λs+µs
− λc)(λs + λc − λcz)

z2λ2
c − zλc(λs + µs + λc + µc) + µc(λs + λc)

. (18b)

The mean queue length L2 can be readily obtained from the above generating
functions and given as follows:

L2 = lim
µc,µs→∞

G′0(1) +G′1(1).
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We take the derivative of (18a) and (18b) and inserting z = 1, as the limit µc, µs →
∞ the mean queue length is given by:

L2 = lim
µc,µs→∞

G′0(1) +G′1(1)

=
λc(µs + µc)

µcλs − λcµs

= (1 +
µc
µs

)
λc

µ̄− λc
. (19)

Recall that the system capacity is given by µ̄ = ρsµc = λs(µc/µs). Fig. 8 plots
the mean queue length versus ρc

ρs
for a given µc

µs
= 10 and λs = 10. For any value of

ρc
ρs

on the x-axis in Fig. 8, the mean queue length is monotonically increasing with

the variance of service rate σ2[µ] = µ̄µc, which perfectly agrees with our assertion
stated at the end of Section 3.1. Therefore, the two limiting cases, L1 and L2, given
in the above two theorems are respectively the lower bound and upper bound of the
mean queue length.
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Figure 8. Mean queue length L is bounded by L1 and L2.

From Theorem 3.1 and Theorem 3.2, we know that the mean queue length L is
bounded by L1 and L2 when λs and µc

µs
are fixed, where the formula L1 is exactly

the mean queue length of M/M/1 queue with arrival rate λc and service rate µ̄ and
the formula L2 = (1 + µc

µs
)L1. Given that λs and µc

µs
are fixed, since inequality (10)

is the necessary and sufficient condition of this M/M/1 queue, the same condition
guarantees that the mean queue length L is finite and the system is stable.

4. An approximation of mean queue length. This section derives an approx-
imate formula of the mean queue length for our queueing model. The derivation
of the two bounds in the previous section indicates that the mean queue length is
dependent on the fluctuation of the service rate. In traditional queueing analysis
with constant service rate, we know that if the service rate is greater than the job
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arrival rate, then the queue length is always finite and the system is stable. On the
other hand, if the service rate is smaller than the job arrival rate, then the queue
length rapidly grows to infinity and the system becomes unstable.

In our queueing model, however, the total service rate varies with time. That
means sometimes the service rate is greater than the job arrival rate, and other
times it is smaller than the job arrival rate. From last section, the mean queue
length achieves the lower bound when the service rate converges to a constant. In
this case, this constant service rate must be larger than the job arrival rate to make
the system stable.

As the service rate fluctuates, if the probability that the service rate is smaller
than the job arrival rate becomes larger, then the system would perform worse than
the lower bound. Thus, the fraction of time that the service rate is smaller than
the job arrival rate determines how much the system would perform worse than
the lower bound. In this section, from the two bounds L1 and L2, we derive the
following approximation of the mean queue length of our queueing model:

L = (1 +
µc
µs
α)

λc
µ̄− λc

, (20)

for some parameter 0 ≤ α ≤ 1.

4.1. Mean queue length formula. We first investigate the service rate fluctu-
ation in time interval [0, T ]. Since the number of servers ns(t) at time t ∈ [0, T ]
may fluctuate around the mean ρs as Fig. 9 shows. Thus the time interval can be
divided into two regions:

Runderload = {t|µ(t) > λc, t ∈ [0, T ]}, (21a)

and

Roverload = {t|µ(t) ≤ λc, t ∈ [0, T ]}. (21b)

And the total amount of time can be noted as Tunderload and Toverload respec-
tively.

The queue length is always finite in the underload region Tunderload, because the
service rate µ(t) exceeds the job arrival rate λc. In the overload region Toverload,
however, the queue length may grow rapidly when the service rate µ(t) is lower
than the job arrival rate λc. In steady state, we have

Pr{µ > λc} = lim
T→∞

Tunderload
T

, (22a)

and

Pr{µ ≤ λc} = lim
T→∞

Toverload
T

. (22b)

We define the following notations used in the derivation of the mean queue length
L:

• Lunderload = E[nc|µ > λc]: conditional mean queue length of underload re-
gion,

• Loverload = E[nc|µ ≤ λc]: conditional mean queue length of overload region,
• a = Pr{µ ≤ λc}: overload probability, and thus the underload probability

equals 1− a,
• b = Pr{µ ≤ µ̄}: probability that service rate µ is smaller than service capacity
µ̄.
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Figure 9. Overload and underload regions.

The mean queue length can be expressed as the combination of the conditional
mean queue lengths as follows:

L = E[nc] = (1− a)Lunderload + aLoverload. (23)

The above expression cannot help us to evaluate the mean queue length because
the two conditional mean values Lunderload and Loverload are unknown. Since we
know that the mean queue length L is bounded by L1 and L2, therefore L can be
expressed as follows:

L = (1− α)L1 + αL2

= (1 +
µc
µs
α)

λc
µ̄− λc

, (24)

for some parameter 0 ≤ α ≤ 1. For a proper chosen parameter α, the linear
combination (24) of L1 and L2, which is similar to expression (23), can serve as a
good approximation of the mean queue length L.

Intuitively, the overload probability a is a measurement that indicates how much
the system performance is worse than the lower bound. When the overload proba-
bility a is small, then the mean queue length L should be close to the lower bound
L1. In particular, when a→ 0, the parameter α should also approach to 0. On the
other hand, for larger overload probability a, the parameter α should also be larger,
indicating that the mean queue length L is closer to the upper bound L2. There-
fore, a proper choice of the parameter α is linearly proportional to the overload
probability a:

α̂ = ka. (25)

When the system becomes saturated as λc approaches µ̄, or equivalently ρc ap-
proaches ρs, we expect that the expression (24) of mean queue length L will reach
the upper bound L2. That is, the proportional constant k can be determined by
the following limiting condition:

lim
λc→µ̄

α̂ = k lim
λc→µ̄

Pr{µ ≤ λc} = kPr{µ ≤ µ̄} = 1, (26)

thus, we have

k =
1

Pr{µ ≤ µ̄}
> 1. (27)
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Figure 10. Overload probability a vs. parameter α.

It follows from (25) and (27) that

α̂ =
a

b
=
Pr{µ ≤ λc}
Pr{µ ≤ µ̄}

=
Pr{ns ≤ ρc}
Pr{ns ≤ ρs}

. (28)

The above choice of the parameter α satisfies the required condition (26), and the
following mean queue length formula is readily obtained from (24):

L ∼= (1 +
µc
µs

a

b
)

λc
µ̄− λc

, (29)

where

a = Pr{µ ≤ λc} =

ρc∑
i=0

ρis
i!
e−ρs ,

bρcc∑
i=0

ρis
i!
e−ρs + (ρc − bρcc)

ρρss
Γ(ρs)

e−ρs , (30a)

and

b = Pr{µ ≤ µ̄} =

ρs∑
i=0

ρis
i!
e−ρs ,

bρsc∑
i=0

ρis
i!
e−ρs + (ρs − bρsc)

ρρss
Γ(ρs)

e−ρs . (30b)

Extensive simulations verify that the parameter α in (28) given by α = L−L1

L2−L1
is

indeed linearly proportional to the overload probability a, as Fig. 10 shows.
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Similar to the convex combination (24) of the mean queue length, the two con-
ditional mean queue lengths Lunderload and Loverload can be respectively expressed
as follows:

Lunderload = (1− α1)L1 + α1L2, (31)

and

Loverload = (1− α2)L1 + α2L2. (32)

When the system is in the overload region Toverload = {t|µ(t) ≤ λc, t ∈ [0, T ]}, we
expect that the mean queue length will quickly reach the upper bound L2 because
the loading is larger than the capacity of the system. In fact, our simulation results
show that the following relation indeed holds in most cases:

Loverload ∼= L2, (33)

that is, an appropriate choice of α2 in expression (32) is α2 = 1. This approximation
(33), however, may perform poorly when both unit service rate µc and job arrival
rate λc are small. As the simulation results displayed in Fig. 11 demonstrate, the
mean queue length in the overload region Loverload is far below the upper bound
L2 when µc = 1 and ρc/ρs < 0.6 or µc = 5 and ρc/ρs < 0.2. However, it should
be noticed that the system rarely comes across to the overload region under this
condition. In fact, our simulation could not even collect any data in the overload
region if Loverload is much less than L2. The reason is that the system does not stay
in the overload region long enough to reach the upper bound L2 if the fraction of
overload time Toverload is too small compared to that of Tunderload. Therefore, the
discrepancy between Loverload and L2 is negligible in most cases, and it becomes
significant only when the overload probability a = Pr{µ ≤ λc}, defined by (22b),
is very small.
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Figure 11. Mean queue length in overload region Loverload and
overload probability a.

Moreover, substituting (33) into (23) and combining the result with (29), we
obtain the following approximation of the mean queue length in underload region:

Lunderload ∼= (1 +
µc
µs
α1)

λc
µ̄− λc

= (1 +
µc
µs

a(1− b)
b(1− a)

)
λc

µ̄− λc
. (34)

For α = ka > a, the parameter α1 = α−a
1−a also satisfies the condition 0 < α1 < 1.
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Figure 12. Simulation and approximation results of mean queue lengths.

The robustness of the mean queue length formula (29) is demonstrated by simu-

lation results displayed in Fig. 12, in which ρc
ρs

= λcµs

λsµc
changes from 0.1 to 0.9 with

a fixed parameter µc

µs
= 10, λs = 10, while µc varies from 1 to 100 and λc changes

from 10 to 90. The mean queue lengths estimated by formula (29) agree with the
simulation results in all cases we considered, even when Loverload is far below the
upper bound, because the weight of Loverload in terms of overload probability a in
this case is extremely small, less than 10−4, which helps to eliminate the discrep-
ancy. For example, Fig. 11 shows that the Loverload is much smaller than the upper
bound L2 when ρc

ρs
is below 0.6, and µc = 1. However, as Fig. 12(a) shows, with
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the same set of parameters, the overall mean queue length L estimated by formula
(29) still fits very well with the simulation result.

4.2. Comparison with P-K formula of M/G/1 queue. The expression (29)
exhibits a strong similarity to the classical P-K formula of M/G/1 queues (11),
which can be rewritten as follows:

L = ρ+
ρ2(1 + C2

b )

2(1− ρ)
= [1 +

ρ

2
(C2

b − 1)]
ρ

1− ρ
(35)

where C2
b = V ar[S]/E2[S] is the coefficient of variation of the service time. The

term ρ
1−ρ is the mean queue length of M/M/1 queue with the same mean service

rate, while the term ρ
2 (C2

b − 1) is an indicator of the fluctuation of the service time.
For a fixed offered load ρ, the fluctuation of the service time and thus the mean
queue length increases with C2

b . As an example, C2
b of an M/D/1 queue is 0, while

that of an M/M/1 queue is 1. Therefore, the mean queue length of an M/D/1 queue
is less than that of an M/M/1 queue [9].

The mean queue length formula (29) of our queueing model and the P-K formula
for M/G/1 queue (35) possess similar expressions. Recall that we derived the two
bounds L1 and L2 of mean queue length L in Section 3 by considering the service
rate fluctuations for a fixed service capacity µ̄ = ρsµc = λsµc

µs
. The degree of service

rate fluctuation is dependent on the average number of servers ρs = E[ns] and the
capacity µc of each server. As we discussed in Section 3, the two bounds of queue
length respectively correspond to the following two limiting cases of service rate
fluctuations:

1. The lower bound L1 of queue length corresponds to the minimum service rate
fluctuation, when the average number of servers is very large, as ρs →∞, and
the capacity of each server is very small, as µc → 0. In this case, the arrival
or departure of any particular server almost does not affect the service rate,
as Fig. 5 shows.

2. The upper bound L2 of queue length corresponds to the maximum service
rate fluctuation, when the average number of servers is very small, as ρs → 0,
and the capacity of each server is very large, as µc → ∞. In this case, the
system has only one server at the best, and the arrival or departure of this
server severely affects the service rate, as Fig. 6 shows.

Since the parameter α is defined in terms of the number of servers ns in (28),
the factor µc

µs
α is served as an indicator of the service time fluctuation in the mean

queue length formula (29) that can be rewritten as follows:

L = (1 +
µc
µs
α)

λc
µ̄− λc

∼= (1 +
µc
µs

Pr{ns ≤ ρc}
Pr{ns ≤ ρs}

)
λc

µ̄− λc
(36)

In the above expression, the factor µc

µs
α is similar to that of the coefficient of

variation of the service time C2
b in the P-K formula (35). However, due to the strong

dependency among the service times of different jobs, the impact of the fluctuation
of service time on the mean queue length of our queueing model is measured by
the entire distribution of the service rate, instead of the first two moments of the
service time in the P-K formula of M/G/1 queue.

4.3. Verifications of limiting cases. In this subsection, we verify all limiting
cases of the system behavior. The results confirm that all limiting cases are consis-
tent with the mean queue length formula (29).
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1. Lower bound
In the limiting case µc → 0 for a fixed service capacity µ̄, the service rate becomes

a constant, that is µ(t) = µ̄ for all t. Since the stability condition ρc < ρs holds
if and only if λc ∈ [0, µ̄), we therefore must have Pr{µ ≤ λc} = 0. In this case

α = Pr{µ≤λc}
Pr{µ≤µ̄} = 0, then the mean queue length reduces to L1 = λc

µ̄−λc
.

2. Upper bound
In the limiting case µc →∞ for a fixed service capacity µ̄, as Fig. 7 shows, the

server arrival process can be described as a two-state Markov chain. The number
of servers in the system is either ns = 0 or ns = 1, and the corresponding service
rate is either µ = 0 or µ = µc, while the service capacity µ̄ = µcPr{ns = 1} < µc.
Since the stability condition (10) implies λc ∈ [0, µ̄), then we must have

Pr{µ ≤ λc} = Pr{µ ≤ µ̄} = Pr{ns = 0}. (37)

It follows that α = Pr{µ≤λc}
Pr{µ≤µ̄} = 1, in which case (29) reduces to the upper bound

L2 = (1 + µc

µs
α) λc

µ̄−λc
.

3. λc → 0
When the job arrival rate λc is very small, the overload probability can be inter-

preted as

lim
λc→0

a = Pr{ns = 0} = e−ρs .

There are two subcases of interest:

• If µs is relatively small, then the average number of servers ρs is very large,
and we have

α =
a

b
=

e−ρs

Pr{µ ≤ µ̄}
→ 0

1
= 0, (38)

which implies that the mean queue length approaches the lower bound L1.
• When µs →∞, then the average number of servers ρs is very small, we have

α =
a

b
=

e−ρs

Pr{µ ≤ µ̄}
→ e−ρs

e−ρs
= 1, (39)

which implies that the mean queue length approaches the upper bound L2.

Thus, when the offer load is small, the system performance is mainly determined
by the server process. This analysis generally agrees with the simulation result
shown in Fig. 8.

4. λc → µ̄

In this case, it is obvious that α = Pr{µ≤λc}
Pr{µ≤µ̄} → 1, which implies that the mean

queue length of the system reaches the upper bound when the offer load is close to
saturation. In Fig. 8, the simulation results also show that the mean queue length
approaches the upper bound when ρc

ρs
→ 1.

5. Conclusion. In this paper, we propose a new kind of varying service rate queue-
ing model in which the number of service rate may be infinite. However, it is math-
ematically intractable to obtain a closed-form solution of the steady-state proba-
bilities of these Markov chains. Inspired by the P-K formula for M/G/1 queue, we
show that the mean queue length of our model is significantly influenced by the
variance of service rate. And we consider the two limiting cases as the bounds of
mean queue length.

Furthermore, we provide a simple formula to estimate the mean queue length.
Extensive simulation studies with different parameters fully verify the accuracy
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of our approximation, and all limiting cases of the system behavior we checked
completely agree with the predictions made by our formula. The similarity between
our approximation and the P-K formula for M/G/1 queue strongly supports our
approach. Thus, this formula could serve as a useful tool in the study of the
performance of varying service rate queueing model.

Using the queueing system with varying service rate to model complicated real
network applications is intrinsically difficult. Except in some simple special cases,
most of them are not solvable by using traditional queueing analysis. We expect
that the approach developed in this paper will shed some light on the queueing
model with variable service rate, and the proposed methodology can be extended
and applied to many other research fields, such as mobile cloud computing or energy
efficient Ethernet.
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