

Modular AWG-based Interconnection for Large-Scale Data Center Networks

Tong Ye, Tony T. Lee, Mao Ge, and Weisheng Hu yetong@sjtu.edu.cn

State Key Lab of Advanced Optical Communications and Networks Shanghai Jiao Tong University

Outline

Background

- AWG-based Interconnection
- Modular AWG-based Interconnection
- Application to Data Center Networks
- Conclusion

World-wide information service infrastructure

Google World-wide Data Center Map

Amazon Web Service's Global Infrastructure

[1] http://datacenterfrontier.com/regional-data-center-clusters-power-amazons-cloud/[2] Sushant Jain et. al., "B4: Experience with a Globally-deployed Software Defined Wan", ACM SIGCOMM, Oct. 2013, pp. 3-14.

Footprint of Data Centers (DCs)

Number of Server Racks

A mega DC requires a large number of long cables with very high capacity

Cabling Problem

• Cable maintenance is extremely difficult, when

- network connections change
- line failures occur

Eventually, cables become a terrible monster...

[1] N. Farrington, E. Rubow, and A. Vahdat, "Data center switch architecture in the age of merchant silicon," in Proc. IEEE HOTI, Aug. 2009.

[2] www.hpl.hp.com/techreports/2015/HPL-2015-8.html

[3] J. Mudigonda, P. Yalagandula, and J. C. Mogul, "Taming the flying cable monster: A topology design and optimization framework for data- center networks," in Proc. ATC, Jun. 2011.

Solution: Wireless Links

- Pros: reduce number of cables
- Cons:
 - Low bandwidth (~Gb/s)
 - Serious radio interference

K. Ramachandran, R. Kokku, R. Mahindra, and S. Rangarajan, "60 GHz data-center networking: Wireless => worry less?" Technical Report, NEC, 2008.
 Y. Cui, H. Wang, X. Cheng, and B. Chen, "Wireless data center networking," IEEE Wireless Commun. Mag., vol. 18, no. 6, pp. 46–53, Dec. 2011.
 N. Hamedazimi et al., "Firefly: A reconfigurable wireless data center fabric using free-space optics," in Proc. ACM SIGCOMM, Oct. 2014.

Solution: Optimal Device Allocation

- Idea: combine several switches to form a high radix switch, but
 - specific for Butterfly networks (not universal)
 - reduce the number of cables only by half (not scalable)

J. Kim, W. J. Dally, and D. Abts, "Flattened butterfly: a cost- effective topology for high-radix networks," in Proc. ACM ISCA, Jun. 2007.

 Replace links of each full mesh by an arrayed waveguide grating (AWG)

- Pros: reduce cabling complexity + bandwidth guaranteed $\sqrt{}$
- Cons: AWG is not scalable if network is very large

• Achieve modular AWG-based interconnection:

- Substantially reduce cabling complexity, while preserving function of original DC networks
- Scalable even when size of DC networks is very large
- Can be applied to different DC networks

Outline

Background

- AWG-based Interconnection
- Modular AWG-based Interconnection
- Application to Data Center Networks
- Conclusion

Topology of Existing Networks

Different networks have the similar subnetwork

M. F. Bari et al., "Data center network virtualization: a survey," IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 909–928, May 2013.
 M. Al-Fares, A. Loukissas, and A. Vahdat, "A scalable, commodity data center network architecture," in Proc. ACM SIGCOMM, Aug. 2008.
 Z. Zhu, S. Zhong, L. Chen, and K. Chen, "Fully programmable and scalable optical switching fabric for petabyte data center", Opt. Express, vol. 32, no. 3, pp. 3563-3580, Feb. 2015.

- Two disjoint node sets
- Exact one fiber link from a node in one set to that in another set

Wavelength (λ) set $\Lambda = \{\lambda_0, \lambda_1, \lambda_2, \lambda_3\}$

- Passive => consume no power
- Provide N_1N_2 links between inputs and outputs

Output# (*j*) is determined by input# (*i*) & λ # (*k*): $j = [k - i]_{|\Lambda|} \stackrel{\text{def}}{=} (k - i) \mod |\Lambda|$

	OUT 0	0UT 1	OUT 2	0UT 3
IN 0	λ	λ_1	λ_2	λ ₃
IN 1	λ_1	λ_2	λ ₃	λ
IN 2	λ_2	λ ₃	λ	λ_1

Cyclic Latin Square if $N_1 = N_2$

AWG-based Interconnection

• Replacing fiber links in \mathcal{N}_A by an AWG yields a network \mathcal{N}_B

Limitations of $N \times N$ AWG

• If *N* is very large:

- In-band crosstalk is prominent (bad physical-layer performance)
- Synthesis is very difficult
- A large number of λ s are required

signals at the same λ interferes with each other

Modular AWG-based Interconnection

Phase 1: AWG decomposition

- Suppress in-band crosstalk
- Cut down synthesis difficulty

- Phase 2: Wavelength reuse
 - Reduce number of required wavelengths

Outline

Background

- AWG-based Interconnection
- Modular AWG-based Interconnection
 - Phase 1: AWG Decomposition
 - Phase 2: Wavelength Reuse
- Application to Data Center Networks
- Conclusion

• $N \times N \text{ AWG} \Rightarrow N \times N \text{ network of AWGs}$:

same routing property

<=> output# is uniquely determined by input# and λ #

Example of Decomposition

 6×6 cyclic Latin square

	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5			
P_0	λ_0	λ_1	λ2	λ ₃	λ_4	λ_5			
P_1	λ_1	λ2	λο	λ_4	λ_5	λ_3			
P_2	λ2	λο	λ_1	λ_5	λ_3	λ_4	Λ		
P_3	λ_3	λ_4	λ_5	λ ₀	λ_1	λ2	A		
P_4	λ_4	λ_5	λ_3	λ1	λ2	λ			
P_5	λ_5	λ ₃	λ_4	λ2	λ	λ			
6×6 Latin square									

Example: Observation 1

	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5
P_0	λο	λ_1	λ_2	λ3	λ_4	λ ₅
P_1	λ	λ2	λ_0	λ4	λ5	λ_3
P_2	λ2	λ_0	λ_1	λ_5	λ3	λ_4
P_3	λ_3	λ_4	λ_5	λο	λ_1	λ ₂
P_4	λ_4	λ_5	λ_3	λ_1	λ2	λ_0
P_5	λ_5	λ_3	λ_4	λ_2	λ_0	λ_1

A consists of 2² 3 × 3 cyclic Latin squares
Each square is associated with a 3 × 3 AWG

Example: Observation 2

- \mathbf{M}_0 is defined on λ -set { $\lambda_0, \lambda_1, \lambda_2$ }
- \mathbf{M}_1 is defined on λ -set { λ_3 , λ_4 , λ_5 }

Initialization:

• Define $n \ r \times r$ cyclic Latin squares (nr = N)

$$\mathbf{M}_0, \mathbf{M}_1, \cdots, \mathbf{M}_{n-1}$$

• Specify an $N \times N$ Latin square **A** with $n^2 r \times r$ blocks $\mathbf{A}_{ab} = \mathbf{M}_{[a+b]_n}$

• Construct an AWG network according to A:

- S1. Central stage construction
- S2. Upper-layer stage construction
- S3. Lower-layer stage construction

- Specify n r × r cyclic Latin squares, where
 N = 6, n = 2, r = 3
 - \mathbf{M}_0 is defined on λ -set $\Lambda_0 = \{\lambda_0, \lambda_1, \lambda_2\}$
 - \mathbf{M}_1 is defined on λ -set $\Lambda_1 = \{\lambda_3, \lambda_4, \lambda_5\}$

	λ ₀	λ1	λ ₂			λ ₃	λ_4	λ_5	
	λ_1	λ2	λ ₀	M ₀	\mathbf{M}_1	λ_4	λ_5	λ_3	
	λ ₂	λ ₀	λ_1			λ_5	λ_3	λ_4	
{	λ ₀ ,	λ_1	, λ ₂	}	{,	λ ₃ ,	λ_4	,λ ₅	;}

Initialization: Specify A

 λ_2

 λ_0

 λ_1

 λ_5

 λ_{A}

 λ_3

 λ_5

 λ_0

 λ_{1}

 λ_2

 λ_4

ι5

 λ_3

 λ_1

 λ_{21}

 λ_0

 λ_5

 λ_3

 λ_4

 λ_2

 λ_0

 $\overline{\lambda}_1$

S1. Central Stage Construction

• Layout $n^2 r \times r$ AWGs from left to right

• Label *k*th AWG by A(a, b) and associate it with \mathbf{A}_{ab} , where $a = \lfloor k/n \rfloor$, $b = \lfloor k \rfloor_n$

S1. Central Stage Construction

• Layout $n^2 r \times r$ AWGs from left to right

• Label *k*th AWG by A(a, b) and associate it with \mathbf{A}_{ab} , where $a = \lfloor k/n \rfloor, b = \lfloor k \rfloor_n$

- Layout *N* DeMuxs at upper layer
- If *i*th row of **A** is α th row of A_{ab} output *b* of DeMux *i* \leftrightarrow upper port α of A(a, b)

- Layout N DeMuxs at upper layer
- If *i*th row of **A** is α th row of A_{ab} ($b = 0 \sim n 1$) output **b** of DeMux $i \leftrightarrow$ upper port α of A(a, b)

- Layout N DeMuxs at upper layer
- If *i*th row of **A** is α th row of A_{ab} ($b = 0 \sim n 1$) output **b** of DeMux $i \leftrightarrow$ upper port α of A(a, b)

• Layout *N* DeMuxs at upper layer

 P_0

 P_1

 P_2

 P_3

 P_4

 P_5

• If *i*th row of **A** is α th row of \mathbf{A}_{ab} ($b = 0 \sim n - 1$)

output *b* of DeMux *i* \leftrightarrow upper port α of A(a, b)

- Layout *N* Muxs at lower layer
- If *j*th col of **A** is β th col of **A**_{*ab*}
 - input *a* of Mux $j \leftrightarrow$ lower port β of A(a, b)

- Layout N Muxs at lower layer
- If *j*th col of **A** is β th col of A_{ab} ($a = 0 \sim n 1$) input **a** of Mux $j \leftrightarrow$ lower port β of A(a, b)

- Layout N Muxs at lower layer
- If *j*th col of **A** is β th col of A_{ab} ($a = 0 \sim n 1$) input **a** of Mux $j \leftrightarrow$ lower port β of A(a, b)

- Layout *N* Muxs at lower layer
- If *j*th col of **A** is β th col of **A**_{*ab*} ($a = 0 \sim n 1$)
 - input *a* of Mux *j* \leftrightarrow lower port β of *A*(*a*, *b*)

• $N \times N \mathcal{N}_B => N \times N \mathcal{N}_C(n, r)$, where nr = N

 \mathcal{N}_B

 $\mathcal{N}_{C}(3,2)$

Outline

- Background
- Preliminaries
- Modular AWG-based Interconnection
 - Phase 1: AWG Decomposition
 - Phase 2: Wavelength Reuse
- Application to Data Center Networks
- Conclusion

Mux/DeMux Replacement

	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5
P_0	λο	λ_1	λ2	λ3	λ_4	λ_5
P_1	λ	λ2	λ_0	λ4	λ_5	λ_3
P_2	λ2	λ_0	λ_1	λ_5	λ_3	λ_4
P_3	λ_3	λ_4	λ_5	λο	λ_1	λ_2
P_4	λ4	λ_5	λ_3	λ	λ2	λ ₀
P_5	λ_5	λ_3	λ_4	λ ₂	λ	$\overline{\lambda}_1$

Network After Mux Replacement

Connections passing through different AWGs are link-disjoint => reuse the same λ-set

• $\mathcal{N}_D(n,r)$ where n = 2 and r = 3

 $\mathcal{N}_D(n,r)$ in General

Comparison

Cabling complexity: $O(N^2)$ Number of required wavelengths: O(1)

Outline

- Background
- Preliminaries
- Modular AWG-based Interconnection
 - AWG Decomposition
 - Wavelength Reuse
- Application to Data Center Networks
- Conclusion

• A 2-D 16,384-node DC network

Z. Zhu, S. Zhong, L. Chen, and K. Chen, "Fully programmable and scalable optical switching fabric for petabyte data center", Opt. Express, vol. 32, no. 3, pp. 3563-3580, Feb. 2015.

AWG-based Interconnection Scheme

• $\mathcal{N}_D(4,32)$: 32 × 32 AWGs in the central stage

Physical Layer Performance

Power penalty (~0.7dB) is very small

If Network is very Large ...

Each central AWG is replaced by an integrated AWG-network module

Conclusions

 AWG-based interconnection networks is proposed for DC networks

- Substantially reduce cabling complexity
- Only employ small-size AWG modules to avoid
 - serious in-band crosstalk
 - difficult synthesis technology
- Reuse same wavelength set, such that
 - number of required wavelengths is small
- Feasibility is confirmed by Physical-layer performance evaluations

Thank you for your attention!