A Parallel Route Assignment Algorithm for
Fault-tolerant Clos Networks in OTN switches

Lingkang Wang, Tong Ye, Tony T. Lee

State Key Lab of Advanced Optical Communications and Networks
Shanghai Jiao Tong University

Qutline

s Introduction and Overview

Fault tolerance

m Fault tolerance is indispensable to current switching networks.

» Fault models for switching networks
= Link fault & Cross-point fault

= [t’s two costly to detect and locate faults of such classes.
= The corresponding re-routing algorithms are complex and manageable.

= Switch fault
» Effects of link faults or cross-point faults can be subsumed by effects of

switch fault. link fault cms_Cross-point fault
IMs _\/_\<\ OMs
2 4 1 B
3 3
4 2 4
1, 2
s 6
3
1 A
8 3 3
9 EX
switeh T/ A\

Fault-tolerant Clos Networks

= A three-stage Clos network C(m,n,r)

= rn X ninput modules, m r X r central modules and r n X n outputs
modules

= Rearrangeable non-blocking condition: m > n
= Clos networks can be made fault-tolerant with extra central

modules (CMs) CMs
. IMs / 1 '\ OMs i
2 1 1 2
3 3
2
4] |4
2 2 2 R
1 6
3
L A
& 3 3 B
9 9

Route AssignmentlL]

= Route assignment is necessary for assigning internally conflict-
free paths in three-stage fault-tolerant Clos networks

CMs

1 IMs /ﬁ\ OMs
2
3
4 /—

b
H
H

| o =

ko

N
F B =

'°’\";\'“

W
SRS

o b
w

— O\

[1]1 H. J. Chao, Z. Jing, and S. Y. Liew, IEEE Commun. Mag., vol. 41, no. 10, pp. 46-54, Oct. 2003.

Bipartite Graph Model

Route assignment problem in three-stage Clos networks can be
formulated as the bipartite-graph edge-coloring problem

CMs . (13 456 79)
- \5[2[786493x
2 4~ ><2' X ¢ y
o X 1 1
4 /Z/ 4
5 9 2 B XZ. y2
4] 6
i 7 X3 y3
3 &—8— 3 B
9) 9 —CM1 ——CM2
\ _/ ——CM3 CM 4
(a) Fault-tolerant Clos network (b) Bipartite graph model

Vertex x; (y;): input (output) module i (j)
Edge e;;: request from x; to y,

Current Routing Algorithms

= GenericRearrangementRoutingl!!
= Link or cross-point fault model

= High complexity: O(|LC|log N + N*>), where N = nk and |LC| is the
total number of faulty cross-points

s Decomposition algorithm[?3]
= Complexity: 0(nr?) for C(m,n,r)

= It shows that the running time can be significantly improved as the
number of extra switch modules increases

[1]1 Y. Yang, J. Wang, “A fault-tolerant rearrangeable permutation network,” IEEE Trans. Comput., vol. 53, no. 4, pp. 414-426, Apr. 2004.[2] M. Karol and C-L. I, IEEE Trans. Commun., vol. 40, no. 2,
pp. 431-439, Feb. 1992.

[2] H. Y. Lee, F. K. Hwang, J. D. Carpinelli, “A new decomposition algorithm for rearrangeable Clos interconnection networks,” IEEE Trans. Commun., vol. 44, no. 11, pp. 1572-1578, Nov. 1996.
[3] H. Y. Lee and J. D. Carpinelli, “Routing algorithms in fault tolerant Clos networks,” in Conf. Inform. Sci. Syst., Princeton University, NJ, Mar. 1994, pp. 227-231.
[4] N. Das, J. Dattagupta, “Two-pass rearrangeability in faulty Benes networks,” Journal of Parallel and Distributed Computing, 1996, 35(2): 191-198.

Our Work

= A parallel routing algorithm for three-stage Clos network

VN(m-1)
m—1+(m—N) log N

= Low complexity: O(log N) (m: #of central modules)

= Fault tolerance: a quick recovery from switch module failures

QOutline

= Route Assignment and Complex Coloring
= Route Assignment in fault-tolerant Clos networks

Route Assignment

= A set of input-output ports matches is given

s Constraint

= The path assignments of two input (output) ports on the same switching
module must be distinct in order to avoid internal conflicts

123456789)

o=

5278|649 3 x
//, CMs
IM oM

Sl S 1 _\ Si

2271 1

3 3
2

4 |4

5 92 5

i 6
3

L A

& 3 3 B

9 EX

o <«

o1

Bipartite Graph Model

= An fault-tolerant Clos network C (m,n,r)
= Input/output modules < vertex set X /Y, |X| = |Y| = r;
= Call requests < edge set E, |E| = nr;
= Size of input/output modules & maximum degree A= n;
= Central modules < colorset C, |C| =

CMs I3456789
5 786493x

IMs OMs

1

Y1

Y2

Y3

—CM1 —CM2
—CM3 CM 4

ko o b b o I ko o b
w N =

~ w)

w N =

e ~ F o = | =
X >
%

Problem Formulation

= Route assignment in fault-tolerant Clos networks

< Edge coloring problem of bipartite graphs with extra colors.

= Coloring a A-edge-colorable bipartite graph with A + 6 colors, where
A=nd=m—-n>0

[Flz

N

I

Jo

X

-

1 /
s
G
P \\\-E‘; X3 Y3

—CM1 —CM?2
—CM3 CM 4

fo
©

QOutline

= Route Assignment and Complex Coloring

= Parallel Complex Coloring of Bipartite Graph

Edge Coloring Constraints

= Vertex constraint X1 Y1
= Colors assigned to links incident

to the same vertex are all distinct X, Yz

X3 VE;

= Edge constraint
= Variable-colored edge
= Constant-colored edge

X1 o Y1 X1 @)
variable

X2 Y2 Xo@ ®)

X3 Y3 X;@
Consistent coloring of G Proper coloring of G

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228-245.

Color-Exchange Operation

= Color-exchange operations preserve the consistency of vertex
constraint

= A color-exchange operation is effective If it does not increase
the number of variables

effective v/ ﬂ ﬂ Ineffective X

o —O0—3——O0—©@

i (a, b) Subgraph

= A (a,b) variable is only allowed to move
within a two-colored (a, b) subgraph

= Don’t care edge: An (a, b) open path may X2 Y2
terminate on such a vertex without a or b link

X1 © Y1

X3 Y3

don’t care edge

- /® e @

= %@ Q) = X0 @)

X: @ @) X: @ @)

i Variable Elimination: Hitting Variable

= More and more difficult to hit other variables along with the
elimination process

X1 @

i Variable Elimination: Hitting Don’t Care Edge

= Number of don’t care edges keeps unchanged in whole
elimination process

= Redundant colors speed up variable elimination

don’t care edge without replace color red with
color blue color blue

Don’t Care vs. Variable

s |wo Kinds of elimination are exclusive

X1 Y1

X @ - 3 Yo

X3 Y3
i

x5 uses color blue

= Eliminated by hitting (b,*) variable

x3 DO NOT use color blue

= Eliminated by a don’t care edge

Parallel Complex Coloring

= Variables can be eliminated by color-exchange simultaneously

= The effectiveness still holds when color exchange operations are
simultaneously performed on two non-adjacent vertices

= High efficiency of variable eliminations!

X1 Y1 Xl? Y1

X2 Yo T xogmm— Y2
O

X3 Y3 X3 () — Y3

QOutline

= Route Assignment and Complex Coloring

= Parallel Complex Coloring of Bipartite Graph
= Rearrangeability

Rearrangeability

= When the graph is slightly changed, only partial changes of the
existing coloring are needed

X1 Y1 X1 Y1
X2 Y2 |:> X2 y2
™ New added edge
X3 Y3 X3 Y3
X1 Y1 X1 oy
X2 Y2 {3 x Y2

QOutline

= Parallel Complex Coloring with Redundant Colors

Parallel Complex Coloring with Extra Colors

= Graph Initialization

s For each vertex, choose a random color out of A + & colors in C for each
of its associated links

= Anexample:A=3,6 =1
= Parallel Complex Coloring

s ForG = (X UY,E), simultaneous color exchanges are performed on
vertices in X and Y alternatively

X1

X1 Y1 X y X1 @Y.
X3 Y3 o
X2)Y I:> Xz: 20- CY2 I:> X2 3 9):
X3 X:@ Y3
bipartite graph consistent colorlng Y2 proper coloring

Vf{ /4

X3 Y3

parallel variable elimination

QOutline

= Parallel Complex Coloring with Extra Colors
s Deadlock Variables

Deadlock Variables

= Variables may be trapped in an infinite loop
= Eliminated by sequential color exchange

s Redundant colors reduce deadlock situation

1.0
08 swo=0
0.6 }17.0169
17.016% 0.002%
0.4l | 37.101% 0.002%

J 29.755%
12.354%
N 3211900.502% 0,057%

0.0 !
0.000% 0.002% 0.004% 0.006% 0.008% 0.010%

0.2 X

-
/

[
< <
) [N
x x
) =
o

[
< <
N [EN

Frequency

2 1.0 97.845%
08N §vo=1
X3 @ Y3 X3 @ Ys cc>>’ 0.6}
[¢B]
n U S 0.4 R
O A
L 0.2R
Xl\ oy Xl®\ oy L 0.0 D 2137% 0.018% | | |
° 0.000% 0.002% 0.004% 0.006% 0.008% 0.010%
98.776% 5: 8

—=Qy, = XD ——ey, ol
\' 0.6
® Yi X3® Vs 04N

0.2

Frequency

0.0 DY 1.218%0006% , , ,
0.000% 0.002% 0.004% 0.006% 0.008% 0.010%

Remaining variable density R(T)

QOutline

= Parallel Complex Coloring with Extra Colors

= Stopping Rule

Notation

= Variable density

of variables

R(t) = 7 of edges (after t iterations)

s Variable elimination rate
of eliminated variables
a(t) =

: of t" jteration
of variables ()

= Hitting time h(t)
= EXxpected number of iterations needed for a variable to hit another
variable of t*" iteration

u h(t) X l/a(t)

Elimination Process

Suppose a(t) = aand h(t) = 1/a.

[EIR(t) — |EIR(t+1) = alE|R(t)
S ~ . ~ A M ~ .
of variables # of variables # of eliminated variables
after titerations after (t+1) iterations of (t+1)t" iteration

= R(t) = (1 — a)*R(0).

For 0 < € « 1, the required number of iterations T is given by
(1—-a)TR(0) = €.
Fora < 1,

R(0) h. R(0)
= —In

1
T =—In
a € a €

Elimination Rate « / Hitting Time h

= When 6 = 0, hitting time h is on the order of 0(log|V|)I1.

= Elimination rate « is on the order of 0(1/log|V]|)
= When § > 0, hitting time h relates to [VV| as well as §

s Difference

= With redundant colors, don’t care edges spread around the bipartite
graph which greatly speed up the variable elimination process

[1] A. Fronczak, P. Fronczak, and J. Hotyst, Phys. Rev. E, 70(5), 2004.

Don’t care edge

= Assuming that each vertex randomly assign one of A 4+ § colors
to its associated links, the probability that a variable hits a don’t
care edge In an iteration is

(A+5—2)

\A-1/)_ o0

p_(A+5—1)_A+6—1
A—1

don't care edge \

other A-1
> links without
color "red"

i Elimination Rate « / Hitting Time h

= Hitting a variable or a don’t care edge are mutually exclusive
m The effect of don’t care edges for elimination process can be

added directly
s Thus, when x > 0, the elimination rate « is on the order of
0(1/log|V| +p)

ﬁ Elimination Rate « / Hitting Time h

= Specifically,
1

N alog(|V|+b) +c
where a, b, ¢ are constants

04 + p.

= Thus,
h_l_ 1 B alog(|V|+b) +c
Ca 1 “1+pxalog(|V|+b) +c

alog(|V|+b) +c TP

Elimination Process: Phase 1

= Variable density R(t)

Phase 1

0 100 200 300 400 500
iteration t

Elimination Process: Phase 2

= Variable density R(t)

Phase 2

0 100 200 300 400 500
iteration t

Elimination Process: Phase 3

= Variable density R(t)

Phase 3 |,

[
>

e CORCCEEEEEEEER PR R e R

0 100 200 300 400 500
iteration t

Simulation Results: h

m |[V|=128and A = 32

30 ¢
* Simulation
25 it Fitting A
<« 20
1<)
E 15
o
E 10 i 16.41og|V| o(1+6 logIV])
= i _1+ﬁX3010g|V|’ 1+8(1 +loglVl) ©
T
5L
S
O 1 1 1 1 1 1

Number of redundant colors, &

Impact of 6

= Redundant colors speed up the elimination process via don’t
care edges

_;hase]]< ’i 520
3| Phase 2 | R(t)
|_____Phase3

- —
Ts

’i ——0=1
- —R(t
|« ()>
' Phase 3
. Tsl .
—-—5=8
Phase 3 R(t)

-

150 200 250 300 350
iteration t

i Stopping Rule

To achieve a given remaining variable density €, the parallel
complex coloring with extra colors é of a bipartite graph should

halt after
A—14+6

A—1+6(1+alog(]V]|+b)+c)
Iterations, where a, b, and c are application-specific parameters.

[alog(|V| + b) + c]

QOutline

= Parallel Routing Algorithm
= Parallel Routing Assignment Algorithm

Initialization

= Random color assignment.

CMs _(123456789)
52786493«

X2>< 9 Y2
X3 > Y3

—CM1 —CM2
—CM3 CM 4

IMs OMs

ko o by b s ko o jo
w N =
~ w N -
w N =
T e ~ F & = | =

Parallel Complex Coloring

Stopping Condition

s C1: All variables have been eliminated.

s C2: The number of iterations reaches the stopping time.
= The remaining variables are eliminated by sequential complex coloring.

i Sequential Complex Coloring

= Anexample.
X1 @)V
— szvyz
Xa:\Y3
X1
X2

4
\ @)

Ny
QO
X3 @ Y3 X3 @ Y3

Coloring to Route Assignment

connection pattern of the corresponding central module.

= (L2 [H 6789

5278493 x

X1 Y1

X2 Y2

X3 Y3
—CM1 ——CM?2

—CM 3 CM 4

IMs

CMs

ko b |-

X

Edges of the same color constitute a matching that forms a

OMs

pd

=

w

o o

e

Vsl

Re-routing Upon CM Failure

= Only affected connections are re-established

IMs

CMs

OMs

A K
b
Ve

CMs

I

'leNH
o

=

!01 N
o [;n

o

o o |~

QOutline

= Parallel Routing Algorithm

s Performance Evaluation

Complexity

= Running time: O (

n(m-—1)
m—1+(m—-n)logr

20 10
—— Qur algorithm
15|~ % - Karol's algorithm
Ton) /* o)
£ L 2 10
<) x7 @
E 10} L £
- *’ E
m e
= K * S
c /* 'E 10
C 5L P c
n::s e g::’
*
%
0 1 1 1 1 101
0 30 60 90 120 150

Number of IMs (or OMs), r

[1] M. J. Karol, and I. Chih-Lin, IEEE/ACM Trans. Comm

un.

log r)
s Extra CMs reduce our running time

N I i T S U

—— Qur algorithm

8 16 24
Number of extra CMs, m-n

- -%- - Karol's algorithm

Recovery Complexity

= The rearrangeablility of complex coloring provides a quick
recovery from switch failures

= ((63,32,128)

o | e - =% -k - -k % - % X
10° FAA A A A CACACACACA DA D

»
c
e —— Qur algorithm
£ 10t} 2 New decomposition
> - -%- - Karol's algorithm
=
=R
S 10
e
10'1 1 1 1
0 8 16 24 32

Number of faulty CMs

Running time (ns)

Scalability of Parallelism

m Scalability with multiple parallel processors

= Strong scaling: refers to the running time of a parallel algorithm versus
the number of processors u for a fixed problem size.

= Weak scaling: refers to the running time of a parallel algorithm versus
the number of processors u for a constant amount of work per processor.

—— QOur algorithm
-------- Ideal scaling

1 1 1

30 60 90 120
Number of parallel processors

(a) Strong scaling

Running time (ns)

25

N
o

—>— Our algorithm
Ideal scaling

4k 6k 8k 10k 12k 14k 16k 18k 20k
Number of parallel processors

(b) Weak scaling

Outline

= Introduction and Overview

= Route Assignment and Complex Coloring

s Parallel Complex Coloring with Redundant Colors
= Parallel Routing Algorithm

= Conclusion

Conclusion

= Our algorithm can always obtain an optimal route assignment
and have 100% bandwidth utilization .

VN(m-1)
m—1+(m—vN) log N

= The time complexity:0(log N) (m: #of

central modules)

= The minimum order of complexity is O(log N) with the constant
switching module size.

= The maximum order of complexity is O(v/N log N) with the switching
module size A = +/N.

[1] T. Lee, Y. Wan, and H. Guan, Randomized A-edge colouring via exchanges of complex colours, Int. J. Comput. Math. 90 (2013), 228—245.

