
A Parallel Route Assignment Algorithm for

Fault-tolerant Clos Networks in OTN switches

Lingkang Wang, Tong Ye, Tony T. Lee

State Key Lab of Advanced Optical Communications and Networks

Shanghai Jiao Tong University

State Key Lab of Advanced Optical Communications and Networks

Shanghai Jiao Tong University

Outline

 Introduction and Overview

 Route Assignment and Complex Coloring

 Parallel Complex Coloring with Redundant Colors

 Parallel Routing Algorithm

 Conclusion

Fault tolerance

 Fault tolerance is indispensable to current switching networks.

 Fault models for switching networks

 Link fault & Cross-point fault

 It’s two costly to detect and locate faults of such classes.

 The corresponding re-routing algorithms are complex and manageable.

 Switch fault

 Effects of link faults or cross-point faults can be subsumed by effects of

switch fault.

12

3

1

25

6

4

38

9

7

IMs

1 2

3

1

2 5

6

4

3 8

9

7

OMs
1

2

3

4

CMslink fault cross-point fault

switch fault

Fault-tolerant Clos Networks

 A three-stage Clos network 𝐶(𝑚, 𝑛, 𝑟)
 𝑟 𝑛 × 𝑛 input modules, 𝑚 𝑟 × 𝑟 central modules and 𝑟 𝑛 × 𝑛 outputs

modules

 Rearrangeable non-blocking condition: 𝑚 ≥ 𝑛

 Clos networks can be made fault-tolerant with extra central

modules (CMs)

12

3

1

25

6

4

38

9

7

IMs

1 2

3

1

2 5

6

4

3 8

9

7

OMs
1

2

3

4

CMs

 Route assignment is necessary for assigning internally conflict-

free paths in three-stage fault-tolerant Clos networks

12

3

1

25

6

4

38

9

7

IMs

1 2

3

1

2 5

6

4

3 8

9

7

OMs
1

2

3

4

CMs

Route Assignment[1]

[1] H. J. Chao, Z. Jing, and S. Y. Liew, IEEE Commun. Mag., vol. 41, no. 10, pp. 46–54, Oct. 2003.

Bipartite Graph Model

 Route assignment problem in three-stage Clos networks can be

formulated as the bipartite-graph edge-coloring problem

Vertex 𝑥𝑖 (𝑦𝑗): input (output) module 𝑖 (𝑗)
Edge 𝑒𝑖𝑗: request from 𝑥𝑖 to 𝑦𝑗

(a) Fault-tolerant Clos network (b) Bipartite graph model

x1

x2

x3

y1

y2

y3

CM 1 CM 2

CM 4CM 3

1

2

3

4

1 2

3

1

2 5

6

4

3 8

9

7

12

3

1

25

6

4

38

9

7

CMs

OMsIMs

2

3

𝑒11

Current Routing Algorithms

 GenericRearrangementRouting[1]

 Link or cross-point fault model

 High complexity: 𝑂(𝐿𝐶 log𝑁 + 𝑁1.5), where 𝑁 = 𝑛𝑘 and 𝐿𝐶 is the

total number of faulty cross-points

 Decomposition algorithm[2,3]

 Complexity: 𝑂(𝑛𝑟2) for 𝐶(𝑚, 𝑛, 𝑟)

 It shows that the running time can be significantly improved as the

number of extra switch modules increases

[1] Y. Yang, J. Wang, “A fault-tolerant rearrangeable permutation network,” IEEE Trans. Comput., vol. 53, no. 4, pp. 414-426, Apr. 2004.[2] M. Karol and C-L. I, IEEE Trans. Commun., vol. 40, no. 2,

pp. 431–439, Feb. 1992.

[2] H. Y. Lee, F. K. Hwang, J. D. Carpinelli, “A new decomposition algorithm for rearrangeable Clos interconnection networks,” IEEE Trans. Commun., vol. 44, no. 11, pp. 1572-1578, Nov. 1996.

[3] H. Y. Lee and J. D. Carpinelli, “Routing algorithms in fault tolerant Clos networks,” in Conf. Inform. Sci. Syst., Princeton University, NJ, Mar. 1994, pp. 227-231.

[4] N. Das, J. Dattagupta, “Two-pass rearrangeability in faulty Benes networks,” Journal of Parallel and Distributed Computing, 1996, 35(2): 191-198.

Our Work

 A parallel routing algorithm for three-stage Clos network

 Low complexity: 𝑂(
𝑁 𝑚−1

𝑚−1+ 𝑚− 𝑁 log 𝑁
log𝑁) (𝑚: #of central modules)

 Fault tolerance: a quick recovery from switch module failures

Outline

 Introduction and Overview

 Route Assignment and Complex Coloring

 Route Assignment in fault-tolerant Clos networks

 Parallel Complex Coloring of Bipartite Graph

 Rearrangeability

 Parallel Complex Coloring with Redundant Colors

 Parallel Routing Algorithm

 Conclusion

5

2

6

5

12

3

1

25

6

4

38

9

7

IMs

1 2

3

1

2 5

6

4

3 8

9

7

OMs
1

2

3

4

CMs

Route Assignment

 A set of input-output ports matches is given

 Constraint

 The path assignments of two input (output) ports on the same switching

module must be distinct in order to avoid internal conflicts

Bipartite Graph Model

 An fault-tolerant Clos network 𝐶(𝑚, 𝑛, 𝑟)
 Input/output modules ⇔ vertex set 𝑋/𝑌, 𝑋 = 𝑌 = 𝑟;

 Call requests ⇔ edge set 𝐸, 𝐸 = 𝑛𝑟;

 Size of input/output modules ⇔ maximum degree ∆= 𝑛;

 Central modules ⇔ color set 𝐶, 𝐶 = 𝑚

x1

x2

x3

y1

y2

y3

CM 1 CM 2

CM 4CM 3

1

2

3

4

1 2

3

1

2 5

6

4

3 8

9

7

12

3

1

25

6

4

38

9

7

CMs

OMsIMs

Problem Formulation

 Route assignment in fault-tolerant Clos networks

⇔ Edge coloring problem of bipartite graphs with extra colors.

 Coloring a Δ-edge-colorable bipartite graph with Δ + 𝛿 colors, where

Δ = 𝑛, 𝛿 = 𝑚 − 𝑛 > 0

x1

x2

x3

y1

y2

y3

CM 1 CM 2

CM 4CM 3

1

2

3

4

1 2

3

1

2 5

6

4

3 8

9

7

12

3

1

25

6

4

38

9

7

CMs

OMsIMs

Outline

 Introduction and Overview

 Route Assignment and Complex Coloring

 Route Assignment in RNB Clos networks

 Parallel Complex Coloring of Bipartite Graph

 Rearrangeability

 Parallel Complex Coloring with Redundant Colors

 Parallel Routing Algorithm

 Conclusion

Edge Coloring Constraints

 Vertex constraint

 Colors assigned to links incident

to the same vertex are all distinct

 Edge constraint

 Variable-colored edge

 Constant-colored edge

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

Proper coloring of GConsistent coloring of G

variable

constant

x1

x2

x3

y1

y2

y3

Color-Exchange Operation

 Color-exchange operations preserve the consistency of vertex

constraint

 A color-exchange operation is effective if it does not increase

the number of variables

effective ✔ ineffective ✘

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

𝑎, 𝑏 Subgraph

 A 𝑎, 𝑏 variable is only allowed to move

within a two-colored 𝑎, 𝑏 subgraph

 Don’t care edge: An 𝑎, 𝑏 open path may

terminate on such a vertex without 𝑎 or 𝑏 link

x1

x2

x3

y1

y2

y3

don’t care edge

Variable Elimination: Hitting Variable

 More and more difficult to hit other variables along with the

elimination process

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

𝑟, 𝑏 variable 𝑏, 𝑏 variable

𝑟, 𝑏 variable 𝑏, 𝑏 variable

Variable Elimination: Hitting Don’t Care Edge

 Number of don’t care edges keeps unchanged in whole

elimination process

 Redundant colors speed up variable elimination

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

don’t care edge without

color blue

replace color red with

color blue

Don’t Care vs. Variable

 Two kinds of elimination are exclusive

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

𝑥3 uses color blue

Eliminated by hitting (𝑏,∗) variable

𝑥3 DO NOT use color blue

Eliminated by a don’t care edge⇒⇒

Parallel Complex Coloring

 Variables can be eliminated by color-exchange simultaneously

 The effectiveness still holds when color exchange operations are

simultaneously performed on two non-adjacent vertices

 High efficiency of variable eliminations!

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

Outline

 Introduction and Overview

 Route Assignment and Complex Coloring

 Route Assignment in RNB Clos networks

 Parallel Complex Coloring of Bipartite Graph

 Rearrangeability

 Parallel Complex Coloring with Redundant Colors

 Parallel Routing Algorithm

 Conclusion

Rearrangeability

 When the graph is slightly changed, only partial changes of the

existing coloring are needed

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

New added edge

Outline

 Introduction and Overview

 Route Assignment and Complex Coloring

 Parallel Complex Coloring with Redundant Colors

 Deadlock Variables

 Stopping Rule

 Parallel Routing Algorithm

 Conclusion

 Graph Initialization

 For each vertex, choose a random color out of Δ + 𝛿 colors in 𝐶 for each

of its associated links

 An example: Δ = 3, 𝛿 = 1

 Parallel Complex Coloring

 For 𝐺 = (𝑋 ∪ 𝑌, 𝐸), simultaneous color exchanges are performed on

vertices in 𝑋 and 𝑌 alternatively

Parallel Complex Coloring with Extra Colors

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

bipartite graph consistent coloring

parallel variable elimination

proper coloring

Outline

 Introduction and Overview

 Preliminaries of Routing and Complex Coloring

 Parallel Complex Coloring with Extra Colors

 Deadlock Variables

 Stopping Rule

 Routing Algorithm for Fault-tolerant Clos Networks

 Conclusion

Deadlock Variables

 Variables may be trapped in an infinite loop

 Eliminated by sequential color exchange

 Redundant colors reduce deadlock situation

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

0.000% 0.002% 0.004% 0.006% 0.008% 0.010%
0.0

0.2

0.4

0.6

0.8

1.0

0.006%1.218%

 = 8

F
re

q
u

en
cy

Remaining variable density R(T
s
)

98.776%

0.000% 0.002% 0.004% 0.006% 0.008% 0.010%
0.0

0.2

0.4

0.6

0.8

1.0
 = 1

F
re

q
u

en
cy

0.018%2.137%

97.845%

0.000% 0.002% 0.004% 0.006% 0.008% 0.010%
0.0

0.2

0.4

0.6

0.8

1.0

0.002%

0.057%

0.002%

0.502%3.211%

12.354%

29.755%
37.101%

17.016%

 = 0

F
re

q
u

en
cy

Outline

 Introduction and Overview

 Preliminaries of Routing and Complex Coloring

 Parallel Complex Coloring with Extra Colors

 Deadlock Variables

 Stopping Rule

 Routing Algorithm for Fault-tolerant Clos Networks

 Conclusion

Notation

 Variable density

𝑅 𝑡 =
of variables

of edges
(after 𝑡 iterations)

 Variable elimination rate

𝛼 𝑡 =
of eliminated variables

of variables
(of 𝑡𝑡ℎ iteration)

 Hitting time ℎ 𝑡
 Expected number of iterations needed for a variable to hit another

variable of 𝑡𝑡ℎ iteration

 ℎ 𝑡 ∝ 1/𝛼(𝑡)

Elimination Process

Suppose 𝛼 𝑡 = 𝛼 and ℎ 𝑡 = 1/𝛼.

𝐸 𝑅 𝑡
⋕ 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑎𝑓𝑡𝑒𝑟 𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

− 𝐸 𝑅 𝑡 + 1
⋕ 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑎𝑓𝑡𝑒𝑟 (𝑡+1) 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

= 𝛼 𝐸 𝑅 𝑡
⋕ 𝑜𝑓 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑜𝑓 (𝑡+1)𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

⟹ 𝑅 𝑡 = 1 − 𝛼 𝑡𝑅 0 .

For 0 < 𝜖 ≪ 1, the required number of iterations 𝑇 is given by

1 − 𝛼 𝑇𝑅 0 = 𝜖.

For 𝛼 ≪ 1,

𝑇 =
1

𝛼
ln
𝑅 0

𝜖
=
ℎ

𝑎
ln
𝑅 0

𝜖
.

Elimination Rate 𝛼 / Hitting Time ℎ

 When 𝛿 = 0, hitting time ℎ is on the order of 𝑂 log 𝑉 [1].

 Elimination rate 𝛼 is on the order of 𝑂 1/ log 𝑉

 When 𝛿 > 0, hitting time ℎ relates to 𝑉 as well as 𝛿

 Difference

 With redundant colors, don’t care edges spread around the bipartite

graph which greatly speed up the variable elimination process

[1] A. Fronczak, P. Fronczak, and J. Hołyst, Phys. Rev. E, 70(5), 2004.

Don’t care edge

 Assuming that each vertex randomly assign one of ∆ + 𝛿 colors

to its associated links, the probability that a variable hits a don’t

care edge in an iteration is

𝑝 =

∆ + 𝛿 − 2
∆ − 1

∆ + 𝛿 − 1
∆ − 1

=
𝛿

∆ + 𝛿 − 1

don't care edge

r b

…
…

other D-1

 links without

color "red"
……

x

Elimination Rate 𝛼 / Hitting Time ℎ

 Hitting a variable or a don’t care edge are mutually exclusive

 The effect of don’t care edges for elimination process can be

added directly

 Thus, when 𝑥 > 0, the elimination rate 𝛼 is on the order of

𝑂 1/ log 𝑉 + 𝑝

Elimination Rate 𝛼 / Hitting Time ℎ

 Specifically,

𝛼 =
1

𝑎 log 𝑉 + 𝑏 + 𝑐
+ 𝑝.

where 𝑎, 𝑏, 𝑐 are constants

 Thus,

ℎ =
1

𝛼
=

1

1
𝑎 log 𝑉 + 𝑏 + 𝑐

+ 𝑝
=

𝑎 log 𝑉 + 𝑏 + 𝑐

1 + 𝑝 × 𝑎 log 𝑉 + 𝑏 + 𝑐

Elimination Process: Phase 1

 Variable density 𝑅(𝑡)

x1

x2

x3

y1

y2

y3

x4 y4

x5 y5

x7 y7

x6 y6

x1

x2

x3

y1

y2

y3

x4 y4

x5 y5

x7 y7

x6 y6

Phase 1

0 100 200 300 400 500

10
-4

10
-3

10
-2

10
-1

10
0

iteration t

R
(t

)

Elimination Process: Phase 2

 Variable density 𝑅(𝑡)

x1

x2

x3

y1

y2

y3

x4 y4

x5 y5

x7 y7

x6 y6

x1

x2

x3

y1

y2

y3

x4 y4

x5 y5

x7 y7

x6 y6

Phase 2

0 100 200 300 400 500

10
-4

10
-3

10
-2

10
-1

10
0

iteration t

R
(t

)

Phase 3

0 100 200 300 400 500

10
-4

10
-3

10
-2

10
-1

10
0

iteration t

R
(t

)

Elimination Process: Phase 3

 Variable density 𝑅(𝑡)

x1

x2

x3

y1

y2

y3

x4 y4

x5 y5

x7 y7

x6 y6

x1

x2

x3

y1

y2

y3

x4 y4

x5 y5

x7 y7

x6 y6

Simulation Results: ℎ

 𝑉 = 128 and Δ = 32

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

 Simulation

 Fitting
H

it
ti

n
g

 t
im

e,
 h

Number of redundant colors,

Impact of 𝛿

 Redundant colors speed up the elimination process via don’t

care edges

10
-5

10
-3

10
-1

 = 0

10
-5

10
-3

10
-1

 = 1

R
(t

)

0 50 100 150 200 250 300 350
10

-5

10
-3

10
-1

 = 8

iteration t

Phase 1

Phase 2

Phase 3

Phase 1

Phase 2
Phase 3

Phase 1

Phase 2

Phase 3

Ts

Ts

Ts

Stopping Rule

To achieve a given remaining variable density 𝜖, the parallel

complex coloring with extra colors 𝛿 of a bipartite graph should

halt after
∆ − 1 + 𝛿

∆ − 1 + 𝛿(1 + 𝑎 log 𝑉 + 𝑏 + 𝑐)
[𝑎 log 𝑉 + 𝑏 + 𝑐]

iterations, where 𝑎, 𝑏, and 𝑐 are application-specific parameters.

Outline

 Introduction and Overview

 Route Assignment and Complex Coloring

 Parallel Complex Coloring with Redundant Colors

 Parallel Routing Algorithm

 Parallel Routing Assignment Algorithm

 Performance Evaluation

 Conclusion

 Random color assignment.

Initialization

CM 1 CM 2

CM 4CM 3

1

2

3

4

1 2

3

1

2 5

6

4

3 8

9

7

12

3

1

25

6

4

38

9

7

CMs

OMsIMs

x1

x2

x3

y1

y2

y3

Parallel Complex Coloring

 Perform color exchanges on vertices in 𝑋 and 𝑌 alternatively.

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

Stopping Condition

 C1: All variables have been eliminated.

 C2: The number of iterations reaches the stopping time.

 The remaining variables are eliminated by sequential complex coloring.

C1

x1

x2

x3

y1

y2

y3

C2

x1

x2

x3

y1

y2

y3

Sequential Complex Coloring

 An example.

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

Coloring to Route Assignment

 Edges of the same color constitute a matching that forms a

connection pattern of the corresponding central module.

x1

x2

x3

y1

y2

y3

1

2

3

4

1 2

3

1

2 5

6

4

3 8

9

7

12

3

1

25

6

4

38

9

7

CMs

OMsIMs

CM 1 CM 2

CM 4CM 3

4 → 8

Re-routing Upon CM Failure

 Only affected connections are re-established

x1

x2

x3

y1

y2

y3

1

2

3

4

1 2

3

1

2 5

6

4

3 8

9

7

12

3

1

25

6

4

38

9

7

CMs

OMsIMs 1

2

3

4

1 2

3

1

2 5

6

4

3 8

9

7

12

3

1

25

6

4

38

9

7

CMs

OMsIMs

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

Outline

 Introduction and Overview

 Route Assignment and Complex Coloring

 Parallel Complex Coloring with Redundant Colors

 Parallel Routing Algorithm

 Parallel Routing Assignment Algorithm

 Performance Evaluation

 Conclusion

0 30 60 90 120 150
0

5

10

15

20

R
u

n
n

in
g

 t
im

e
(n

s)

Number of IMs (or OMs), r

 Our algorithm

 Karol's algorithm

Complexity

 Running time: 𝑂
𝑛(𝑚−1)

𝑚−1+ 𝑚−𝑛 log 𝑟
log 𝑟

 Extra CMs reduce our running time

[1] M. J. Karol, and I. Chih-Lin, IEEE/ACM Trans. Commun.

0 8 16 24 32
10

-1

10
0

10
1

10
2

 Our algorithm

 Karol's algorithm

R
u

n
n

in
g

 t
im

e
(n

s)

Number of extra CMs, m-n

Recovery Complexity

 The rearrangeablility of complex coloring provides a quick

recovery from switch failures

 𝐶(63,32,128)

0 8 16 24 32
10

-1

10
0

10
1

10
2

10
3

 Our algorithm

 New decomposition

 Karol's algorithm

R
u

n
n

in
g

 t
im

e
(n

s)

Number of faulty CMs

Scalability of Parallelism

 Scalability with multiple parallel processors

 Strong scaling: refers to the running time of a parallel algorithm versus

the number of processors 𝑢 for a fixed problem size.

 Weak scaling: refers to the running time of a parallel algorithm versus

the number of processors 𝑢 for a constant amount of work per processor.

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
0

5

10

15

20

25

 Our algorithm

 Ideal scaling

R
u

n
n

in
g

 t
im

e
(n

s)

Number of parallel processors

0 30 60 90 120
10

0

10
1

10
2

10
3

 Our algorithm

 Ideal scaling

R
u

n
n

in
g

 t
im

e
(n

s)

Number of parallel processors

(a) Strong scaling (b) Weak scaling

Outline

 Introduction and Overview

 Route Assignment and Complex Coloring

 Parallel Complex Coloring with Redundant Colors

 Parallel Routing Algorithm

 Conclusion

Conclusion

 Our algorithm can always obtain an optimal route assignment

and have 100% bandwidth utilization .

 The time complexity:𝑂(
𝑁 𝑚−1

𝑚−1+ 𝑚− 𝑁 log 𝑁
log𝑁) (𝑚: #of

central modules)

 The minimum order of complexity is 𝑂 log𝑁 with the constant

switching module size.

 The maximum order of complexity is 𝑂 𝑁 log𝑁 with the switching

module size Δ = 𝑁.

[1] T. Lee, Y. Wan, and H. Guan, Randomized ∆-edge colouring via exchanges of complex colours, Int. J. Comput. Math. 90 (2013), 228–245.

