A Parallel Route Assignment Algorithm for Fault-tolerant Clos Networks in OTN switches

Lingkang Wang, Tong Ye, Tony T. Lee

State Key Lab of Advanced Optical Communications and Networks Shanghai Jiao Tong University

Introduction and Overview

- Route Assignment and Complex Coloring
- Parallel Complex Coloring with Redundant Colors
- Parallel Routing Algorithm
- Conclusion

Fault tolerance

- Fault tolerance is indispensable to current switching networks.
- Fault models for switching networks
 - Link fault & Cross-point fault
 - It's two costly to detect and locate faults of such classes.
 - The corresponding re-routing algorithms are complex and manageable.
 - Switch fault
 - Effects of link faults or cross-point faults can be subsumed by effects of switch fault.

Fault-tolerant Clos Networks

- A three-stage Clos network C(m, n, r)
 - $r n \times n$ input modules, $m r \times r$ central modules and $r n \times n$ outputs modules
 - Rearrangeable non-blocking condition: $m \ge n$
- Clos networks can be made fault-tolerant with extra central modules (CMs)
 CMs

 Route assignment is necessary for assigning internally conflictfree paths in three-stage fault-tolerant Clos networks

Bipartite Graph Model

 Route assignment problem in three-stage Clos networks can be formulated as the bipartite-graph edge-coloring problem

Vertex $x_i (y_j)$: input (output) module i (j)Edge e_{ij} : request from x_i to y_j

Current Routing Algorithms

- *GenericRearrangementRouting*^[1]
 - Link or cross-point fault model
 - High complexity: $O(|LC| \log N + N^{1.5})$, where N = nk and |LC| is the total number of faulty cross-points
- Decomposition algorithm^[2,3]
 - Complexity: $O(nr^2)$ for C(m, n, r)
 - It shows that the running time can be significantly improved as the number of extra switch modules increases

^[1] Y. Yang, J. Wang, "A fault-tolerant rearrangeable permutation network," *IEEE Trans. Comput.*, vol. 53, no. 4, pp. 414-426, Apr. 2004.[2] M. Karol and C-L. I, *IEEE Trans. Commun.*, vol. 40, no. 2, pp. 431–439, Feb. 1992.

^[2] H. Y. Lee, F. K. Hwang, J. D. Carpinelli, "A new decomposition algorithm for rearrangeable Clos interconnection networks," IEEE Trans. Commun., vol. 44, no. 11, pp. 1572-1578, Nov. 1996.

^[3] H. Y. Lee and J. D. Carpinelli, "Routing algorithms in fault tolerant Clos networks," in Conf. Inform. Sci. Syst., Princeton University, NJ, Mar. 1994, pp. 227-231.

^[4] N. Das, J. Dattagupta, "Two-pass rearrangeability in faulty Benes networks," Journal of Parallel and Distributed Computing, 1996, 35(2): 191-198.

A parallel routing algorithm for three-stage Clos network

Our Work

- Low complexity: $O(\frac{\sqrt{N}(m-1)}{m-1+(m-\sqrt{N})\log N}\log N)$ (*m*: #of central modules)
- Fault tolerance: a quick recovery from switch module failures

Outline

- Introduction and Overview
- Route Assignment and Complex Coloring
 - Route Assignment in fault-tolerant Clos networks
 - Parallel Complex Coloring of Bipartite Graph
 - Rearrangeability
- Parallel Complex Coloring with Redundant Colors
- Parallel Routing Algorithm
- Conclusion

Route Assignment

- A set of input-output ports matches is given
- Constraint
 - The path assignments of two input (output) ports on the same switching module must be distinct in order to avoid internal conflicts

Bipartite Graph Model

- An fault-tolerant Clos network C(m, n, r)
 - Input/output modules \Leftrightarrow vertex set X/Y, |X| = |Y| = r;
 - Call requests \Leftrightarrow edge set E, |E| = nr;
 - Size of input/output modules \Leftrightarrow maximum degree $\Delta = n$;
 - Central modules \Leftrightarrow color set C, |C| = m

Problem Formulation

- Route assignment in fault-tolerant Clos networks
- \Leftrightarrow Edge coloring problem of bipartite graphs with extra colors.
 - Coloring a Δ -edge-colorable bipartite graph with $\Delta + \delta$ colors, where $\Delta = n, \delta = m n > 0$

Outline

- Introduction and Overview
- Route Assignment and Complex Coloring
 - Route Assignment in RNB Clos networks
 - Parallel Complex Coloring of Bipartite Graph
 - Rearrangeability
- Parallel Complex Coloring with Redundant Colors
- Parallel Routing Algorithm
- Conclusion

Edge Coloring Constraints

- Vertex constraint
 - Colors assigned to links incident to the same vertex are all distinct

- Edge constraint
 - Variable-colored edge
 - Constant-colored edge

Color-Exchange Operation

- Color-exchange operations preserve the consistency of vertex constraint
- A color-exchange operation is effective if it does not increase the number of variables

(*a*, *b*) Subgraph

- A (a, b) variable is only allowed to move within a two-colored (a, b) subgraph
 - Don't care edge: An (a, b) open path may terminate on such a vertex without a or b link

Variable Elimination: Hitting Variable

More and more difficult to hit other variables along with the elimination process

Variable Elimination: Hitting Don't Care Edge

- Number of don't care edges keeps unchanged in whole elimination process
- Redundant colors speed up variable elimination

don't care edge without color blue

replace color red with color blue

Don't Care vs. Variable

Two kinds of elimination are exclusive

 x_3 uses color blue

 \Rightarrow Eliminated by hitting (*b*,*) variable

 \Rightarrow Eliminated by a don't care edge

Parallel Complex Coloring

- Variables can be eliminated by color-exchange simultaneously
 - The effectiveness still holds when color exchange operations are simultaneously performed on two non-adjacent vertices
 - High efficiency of variable eliminations!

Outline

- Introduction and Overview
- Route Assignment and Complex Coloring
 - Route Assignment in RNB Clos networks
 - Parallel Complex Coloring of Bipartite Graph
 - Rearrangeability
- Parallel Complex Coloring with Redundant Colors
- Parallel Routing Algorithm
- Conclusion

Rearrangeability

 When the graph is slightly changed, only partial changes of the existing coloring are needed

Outline

- Introduction and Overview
- Route Assignment and Complex Coloring
- Parallel Complex Coloring with Redundant Colors
 - Deadlock Variables
 - Stopping Rule
- Parallel Routing Algorithm
- Conclusion

Parallel Complex Coloring with Extra Colors

Graph Initialization

- For each vertex, choose a random color out of $\Delta + \delta$ colors in *C* for each of its associated links
 - An example: $\Delta = 3, \delta = 1$
- Parallel Complex Coloring
 - For G = (X ∪ Y, E), simultaneous color exchanges are performed on vertices in X and Y alternatively

Outline

- Introduction and Overview
- Preliminaries of Routing and Complex Coloring
- Parallel Complex Coloring with Extra Colors
 - Deadlock Variables
 - Stopping Rule
- Routing Algorithm for Fault-tolerant Clos Networks
- Conclusion

Deadlock Variables

- Variables may be trapped in an infinite loop
 - Eliminated by sequential color exchange
- Redundant colors reduce deadlock situation

Outline

- Introduction and Overview
- Preliminaries of Routing and Complex Coloring
- Parallel Complex Coloring with Extra Colors
 - Deadlock Variables
 - Stopping Rule
- Routing Algorithm for Fault-tolerant Clos Networks
- Conclusion

• Variable density $R(t) = \frac{\# \text{ of variables}}{\# \text{ of edges}} \text{ (after } t \text{ iterations)}$

• Variable elimination rate $\alpha(t) = \frac{\# \text{ of eliminated variables}}{\# \text{ of variables}} (\text{ of } t^{th} \text{ iteration})$

- Hitting time h(t)
 - Expected number of iterations needed for a variable to hit another variable of tth iteration
 - $h(t) \propto 1/\alpha(t)$

Suppose
$$\alpha(t) = \alpha$$
 and $h(t) = 1/\alpha$.

$$\underbrace{|E|R(t)|}_{\text{# of variables}} - \underbrace{|E|R(t+1)|}_{\text{# of variables}} = \underbrace{\alpha|E|R(t)|}_{\text{# of eliminated variables}}$$

$$\operatorname{after t iterations} \quad \operatorname{after (t+1) iterations} \quad \operatorname{of (t+1)^{th} iteration}$$

$$\Rightarrow R(t) = (1 - \alpha)^{t} R(0).$$

For $0 < \epsilon \ll 1$, the required number of iterations *T* is given by $(1 - \alpha)^T R(0) = \epsilon.$

For $\alpha \ll 1$,

A.

$$T = \frac{1}{\alpha} \ln \frac{R(0)}{\epsilon} = \frac{h}{a} \ln \frac{R(0)}{\epsilon}.$$

- When $\delta = 0$, hitting time *h* is on the order of $O(\log|V|)^{[1]}$.
 - Elimination rate α is on the order of $O(1/\log|V|)$
- When $\delta > 0$, hitting time *h* relates to |V| as well as δ
- Difference
 - With redundant colors, don't care edges spread around the bipartite graph which greatly speed up the variable elimination process

Don't care edge

Assuming that each vertex randomly assign one of Δ + δ colors to its associated links, the probability that a variable hits a don't care edge in an iteration is

$$p = \frac{\begin{pmatrix} \Delta + \delta - 2 \\ \Delta - 1 \end{pmatrix}}{\begin{pmatrix} \Delta + \delta - 1 \\ \Delta - 1 \end{pmatrix}} = \frac{\delta}{\Delta + \delta - 1}$$

Elimination Rate α / Hitting Time h

- Hitting a variable or a don't care edge are mutually exclusive
- The effect of don't care edges for elimination process can be added directly
- Thus, when x > 0, the elimination rate α is on the order of O(1/log|V| + p)

Specifically,

$$\alpha = \frac{1}{a\log(|V|+b)+c} + p.$$

where *a*, *b*, *c* are constants

Elimination Process: Phase 1

• Variable density R(t)

Elimination Process: Phase 2

• Variable density R(t)

Elimination Process: Phase 3

• Variable density R(t)

Simulation Results: h

• |V| = 128 and $\Delta = 32$

Impact of δ

Redundant colors speed up the elimination process via don't care edges

Stopping Rule

To achieve a given remaining variable density ϵ , the parallel complex coloring with extra colors δ of a bipartite graph should halt after

$$\frac{\Delta - 1 + \delta}{\Delta - 1 + \delta(1 + a\log(|V| + b) + c)} [a\log(|V| + b) + c]$$

iterations, where *a*, *b*, and *c* are application-specific parameters.

Outline

- Introduction and Overview
- Route Assignment and Complex Coloring
- Parallel Complex Coloring with Redundant Colors
- Parallel Routing Algorithm
 - Parallel Routing Assignment Algorithm
 - Performance Evaluation
- Conclusion

Random color assignment.

• Perform color exchanges on vertices in *X* and *Y* alternatively.

Stopping Condition

- C1: All variables have been eliminated.
- C2: The number of iterations reaches the stopping time.
 - The remaining variables are eliminated by sequential complex coloring.

Sequential Complex Coloring

• An example.

Coloring to Route Assignment

• Edges of the same color constitute a matching that forms a connection pattern of the corresponding central module.

Re-routing Upon CM Failure

Only affected connections are re-established

Outline

- Introduction and Overview
- Route Assignment and Complex Coloring
- Parallel Complex Coloring with Redundant Colors
- Parallel Routing Algorithm
 - Parallel Routing Assignment Algorithm
 - Performance Evaluation
- Conclusion

Complexity

• Running time:
$$O\left(\frac{n(m-1)}{m-1+(m-n)\log r}\log r\right)$$

• Extra CMs reduce our running time

Recovery Complexity

- The rearrangeablility of complex coloring provides a quick recovery from switch failures
 - *C*(63,32,128)

Scalability of Parallelism

- Scalability with multiple parallel processors
 - Strong scaling: refers to the running time of a parallel algorithm versus the number of processors u for a fixed problem size.
 - Weak scaling: refers to the running time of a parallel algorithm versus the number of processors u for a constant amount of work per processor.

Outline

- Introduction and Overview
- Route Assignment and Complex Coloring
- Parallel Complex Coloring with Redundant Colors
- Parallel Routing Algorithm
- Conclusion

Conclusion

- Our algorithm can always obtain an optimal route assignment and have 100% bandwidth utilization .
- The time complexity: $O(\frac{\sqrt{N}(m-1)}{m-1+(m-\sqrt{N})\log N}\log N)$ (*m*: #of central modules)
 - The minimum order of complexity is $O(\log N)$ with the constant switching module size.
 - The maximum order of complexity is $O(\sqrt{N} \log N)$ with the switching module size $\Delta = \sqrt{N}$.