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Fault tolerance

 Fault tolerance is indispensable to current switching networks.

 Fault models for switching networks

 Link fault & Cross-point fault

 It’s two costly to detect and locate faults of such classes.

 The corresponding re-routing algorithms are complex and manageable.

 Switch fault

 Effects of link faults or cross-point faults can be subsumed by effects of 

switch fault. 
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Fault-tolerant Clos Networks

 A three-stage Clos network 𝐶(𝑚, 𝑛, 𝑟)
 𝑟 𝑛 × 𝑛 input modules, 𝑚 𝑟 × 𝑟 central modules and 𝑟 𝑛 × 𝑛 outputs 

modules

 Rearrangeable non-blocking condition: 𝑚 ≥ 𝑛

 Clos networks can be made fault-tolerant with extra central

modules (CMs)
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 Route assignment is necessary for assigning internally conflict-

free paths in three-stage fault-tolerant Clos networks
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Route Assignment[1]

[1] H. J. Chao, Z. Jing, and S. Y. Liew, IEEE Commun. Mag., vol. 41, no. 10, pp. 46–54, Oct. 2003.



Bipartite Graph Model

 Route assignment problem in three-stage Clos networks can be 

formulated as the bipartite-graph edge-coloring problem

Vertex 𝑥𝑖 (𝑦𝑗): input (output) module 𝑖 (𝑗)
Edge 𝑒𝑖𝑗: request from 𝑥𝑖 to 𝑦𝑗

(a) Fault-tolerant Clos network (b) Bipartite graph model
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Current Routing Algorithms

 GenericRearrangementRouting[1]

 Link or cross-point fault model

 High complexity: 𝑂( 𝐿𝐶 log𝑁 + 𝑁1.5), where 𝑁 = 𝑛𝑘 and 𝐿𝐶 is the 

total number of faulty cross-points

 Decomposition algorithm[2,3]

 Complexity: 𝑂(𝑛𝑟2) for 𝐶(𝑚, 𝑛, 𝑟)

 It shows that the running time can be significantly improved as the 

number of extra switch modules increases

[1] Y. Yang, J. Wang, “A fault-tolerant rearrangeable permutation network,” IEEE Trans. Comput., vol. 53, no. 4, pp. 414-426, Apr. 2004.[2] M. Karol and C-L. I, IEEE Trans. Commun., vol. 40, no. 2,  

pp. 431–439, Feb. 1992.

[2] H. Y. Lee, F. K. Hwang, J. D. Carpinelli, “A new decomposition algorithm for rearrangeable Clos interconnection networks,” IEEE Trans. Commun., vol. 44, no. 11, pp. 1572-1578, Nov. 1996.

[3] H. Y. Lee and J. D. Carpinelli, “Routing algorithms in fault tolerant Clos networks,” in Conf. Inform. Sci. Syst., Princeton University, NJ, Mar. 1994, pp. 227-231.

[4] N. Das, J. Dattagupta, “Two-pass rearrangeability in faulty Benes networks,” Journal of Parallel and Distributed Computing, 1996, 35(2): 191-198.



Our Work

 A parallel routing algorithm for three-stage Clos network

 Low complexity: 𝑂(
𝑁 𝑚−1

𝑚−1+ 𝑚− 𝑁 log 𝑁
log𝑁) (𝑚: #of central modules)

 Fault tolerance: a quick recovery from switch module failures
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Route Assignment 

 A set of input-output ports matches is given

 Constraint

 The path assignments of two input (output) ports on the same switching 

module must be distinct in order to avoid internal conflicts



Bipartite Graph Model 

 An fault-tolerant Clos network 𝐶(𝑚, 𝑛, 𝑟)
 Input/output modules ⇔ vertex set 𝑋/𝑌, 𝑋 = 𝑌 = 𝑟;

 Call requests ⇔ edge set 𝐸, 𝐸 = 𝑛𝑟;

 Size of input/output modules ⇔ maximum degree ∆= 𝑛;

 Central modules ⇔ color set 𝐶, 𝐶 = 𝑚
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Problem Formulation

 Route assignment in fault-tolerant Clos networks 

⇔ Edge coloring problem of bipartite graphs with extra colors.

 Coloring a Δ-edge-colorable bipartite graph with Δ + 𝛿 colors, where 

Δ = 𝑛, 𝛿 = 𝑚 − 𝑛 > 0
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Edge Coloring Constraints

 Vertex constraint

 Colors assigned to links incident 

to the same vertex are all distinct

 Edge constraint

 Variable-colored edge

 Constant-colored edge

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.
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Color-Exchange Operation 

 Color-exchange operations preserve the consistency of vertex 

constraint

 A color-exchange operation is effective if it does not increase 

the number of variables

effective ✔ ineffective ✘
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𝑎, 𝑏 Subgraph

 A 𝑎, 𝑏 variable is only allowed to move 

within a two-colored 𝑎, 𝑏 subgraph

 Don’t care edge: An 𝑎, 𝑏 open path may 

terminate on such a vertex without 𝑎 or 𝑏 link
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Variable Elimination: Hitting Variable

 More and more difficult to hit other variables along with the 

elimination process

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

𝑟, 𝑏 variable 𝑏, 𝑏 variable

𝑟, 𝑏 variable 𝑏, 𝑏 variable



Variable Elimination: Hitting Don’t Care Edge

 Number of don’t care edges keeps unchanged in whole 

elimination process

 Redundant colors speed up variable elimination
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Don’t Care vs. Variable

 Two kinds of elimination are exclusive
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Parallel Complex Coloring

 Variables can be eliminated by color-exchange simultaneously

 The effectiveness still holds when color exchange operations are 

simultaneously performed on two non-adjacent vertices

 High efficiency of variable eliminations!
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Rearrangeability

 When the graph is slightly changed, only partial changes of the 

existing coloring are needed
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 Graph Initialization

 For each vertex, choose a random color out of Δ + 𝛿 colors in 𝐶 for each 

of its associated links

 An example: Δ = 3, 𝛿 = 1

 Parallel Complex Coloring

 For 𝐺 = (𝑋 ∪ 𝑌, 𝐸), simultaneous color exchanges are performed on 

vertices in 𝑋 and 𝑌 alternatively

Parallel Complex Coloring with Extra Colors
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Deadlock Variables

 Variables may be trapped in an infinite loop

 Eliminated by sequential color exchange

 Redundant colors reduce deadlock situation
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Notation

 Variable density

𝑅 𝑡 =
# of variables

# of edges
(after 𝑡 iterations)

 Variable elimination rate

𝛼 𝑡 =
# of eliminated variables

# of variables
(of 𝑡𝑡ℎ iteration)

 Hitting time ℎ 𝑡
 Expected number of iterations needed for a variable to hit another 

variable of 𝑡𝑡ℎ iteration

 ℎ 𝑡 ∝ 1/𝛼(𝑡)



Elimination Process

Suppose 𝛼 𝑡 = 𝛼 and ℎ 𝑡 = 1/𝛼.

𝐸 𝑅 𝑡
⋕ 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑎𝑓𝑡𝑒𝑟 𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

− 𝐸 𝑅 𝑡 + 1
⋕ 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑎𝑓𝑡𝑒𝑟 (𝑡+1) 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

= 𝛼 𝐸 𝑅 𝑡
⋕ 𝑜𝑓 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑜𝑓 (𝑡+1)𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

⟹ 𝑅 𝑡 = 1 − 𝛼 𝑡𝑅 0 .

For 0 < 𝜖 ≪ 1, the required number of iterations 𝑇 is given by

1 − 𝛼 𝑇𝑅 0 = 𝜖.

For 𝛼 ≪ 1,

𝑇 =
1

𝛼
ln
𝑅 0

𝜖
=
ℎ

𝑎
ln
𝑅 0

𝜖
.



Elimination Rate 𝛼 / Hitting Time ℎ

 When 𝛿 = 0, hitting time ℎ is on the order of 𝑂 log 𝑉 [1].

 Elimination rate 𝛼 is on the order of 𝑂 1/ log 𝑉

 When 𝛿 > 0, hitting time ℎ relates to 𝑉 as well as 𝛿

 Difference

 With redundant colors, don’t care edges spread around the bipartite 

graph which greatly speed up the variable elimination process

[1] A. Fronczak, P. Fronczak, and J. Hołyst, Phys. Rev. E, 70(5), 2004.



Don’t care edge

 Assuming that each vertex randomly assign one of ∆ + 𝛿 colors 

to its associated links, the probability that a variable hits a don’t 

care edge in an iteration is

𝑝 =

∆ + 𝛿 − 2
∆ − 1

∆ + 𝛿 − 1
∆ − 1

=
𝛿

∆ + 𝛿 − 1

don't care edge

r b
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other D-1
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Elimination Rate 𝛼 / Hitting Time ℎ

 Hitting a variable or a don’t care edge are mutually exclusive

 The effect of don’t care edges for elimination process can be 

added directly

 Thus, when 𝑥 > 0, the elimination rate 𝛼 is on the order of 

𝑂 1/ log 𝑉 + 𝑝



Elimination Rate 𝛼 / Hitting Time ℎ

 Specifically,

𝛼 =
1

𝑎 log 𝑉 + 𝑏 + 𝑐
+ 𝑝.

where 𝑎, 𝑏, 𝑐 are constants

 Thus,

ℎ =
1

𝛼
=

1

1
𝑎 log 𝑉 + 𝑏 + 𝑐

+ 𝑝
=

𝑎 log 𝑉 + 𝑏 + 𝑐

1 + 𝑝 × 𝑎 log 𝑉 + 𝑏 + 𝑐



Elimination Process: Phase 1

 Variable density 𝑅(𝑡)
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Elimination Process: Phase 2

 Variable density 𝑅(𝑡)

x1

x2

x3

y1

y2

y3

x4 y4

x5 y5

x7 y7

x6 y6

x1

x2

x3

y1

y2

y3

x4 y4

x5 y5

x7 y7

x6 y6

Phase 2

0 100 200 300 400 500

10
-4

10
-3

10
-2

10
-1

10
0

 

 

iteration t

R
(t

)



Phase 3
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Elimination Process: Phase 3

 Variable density 𝑅(𝑡)
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Simulation Results: ℎ

 𝑉 = 128 and Δ = 32
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Impact of 𝛿

 Redundant colors speed up the elimination process via don’t 

care edges
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Stopping Rule

To achieve a given remaining variable density 𝜖, the parallel 

complex coloring with extra colors 𝛿 of a bipartite graph should 

halt after 
∆ − 1 + 𝛿

∆ − 1 + 𝛿(1 + 𝑎 log 𝑉 + 𝑏 + 𝑐)
[𝑎 log 𝑉 + 𝑏 + 𝑐]

iterations, where 𝑎, 𝑏, and 𝑐 are application-specific parameters.
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 Random color assignment.

Initialization
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Parallel Complex Coloring

 Perform color exchanges on vertices in 𝑋 and 𝑌 alternatively.
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Stopping Condition

 C1: All variables have been eliminated.

 C2: The number of iterations reaches the stopping time.

 The remaining variables are eliminated by sequential complex coloring.
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Sequential Complex Coloring

 An example.
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Coloring to Route Assignment

 Edges of the same color constitute a matching that forms a 

connection pattern of the corresponding central module.
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Re-routing Upon CM Failure

 Only affected connections are re-established
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[1] M. J. Karol, and I. Chih-Lin,  IEEE/ACM Trans. Commun. 
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Recovery Complexity

 The rearrangeablility of complex coloring provides a quick 

recovery from switch failures

 𝐶(63,32,128)
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Scalability of Parallelism

 Scalability with multiple parallel processors

 Strong scaling: refers to the running time of a parallel algorithm versus 

the number of processors 𝑢 for a fixed problem size.

 Weak scaling: refers to the running time of a parallel algorithm versus 

the number of processors 𝑢 for a constant amount of work per processor.
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Conclusion

 Our algorithm can always obtain an optimal route assignment 

and have 100% bandwidth utilization .

 The time complexity:𝑂(
𝑁 𝑚−1

𝑚−1+ 𝑚− 𝑁 log 𝑁
log𝑁) (𝑚: #of 

central modules)

 The minimum order of complexity is 𝑂 log𝑁 with the constant 

switching module size.

 The maximum order of complexity is 𝑂 𝑁 log𝑁 with the switching 

module size Δ = 𝑁.
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