A Parallel Complex Coloring Algorithm for Scheduling of Input-Queued Switches

Lingkang Wang, Tong Ye, Tony T. Lee, and Weisheng Hu

State Key Lab of Advanced Optical Communications and Networks Shanghai Jiao Tong University

Introduction and Overview

- **Preliminaries of Scheduling and Complex Coloring**
- **Parallel Complex Coloring**
- **Parallel Scheduling Algorithm**
- **Performance of Scheduling Algorithms**

 Cell scheduling is indispensable to properly set up connection patterns to avoid output contentions.

 The cell-scheduling problem can be formulated as the bipartitegraph matching (or edge coloring) problem.

Vertex $x_i(y_j)$: input (output) port $i(j)$ Edge e_{ij} : arrival packets from x_i to y_j Color: assigned timeslot for transmission

- Maximum Size Matching (iSLIP^[1])
	- Pros: 100% throughput under any uniform traffic
	- Cons: $O(N \log N)$ on-line complexity
- **Maximum Weighted Matching (iLQF, iOCF^[2])**
	- Pros: 100% throughput under any traffic
	- Cons: $O(N^2 \log N)$ on-line complexity
- Frame-based scheduling (Fair-Frame^[3])
	- Pros: 100% throughput under any traffic
	- Cons: $O(Nf)$ on-line complexity (f: frame size)

^[1] N. McKeown, *IEEE/ACM Trans. Netw.,* vol. 7, no. 2, pp. 188–201, Apr. 1999.

^[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, *IEEE Trans. Commun.,* vol. 47, no. 8, pp. 1260–1267, Aug. 1999.

^[3] M. J. Neely, E. Modiano, Y. S. Cheng, *IEEE/ACM Trans. Netw.*, vol. 15, no. 3, pp. 657–668, 2007.

Our Contribution

- A frame-based scheduling algorithm based on an algebraic edge coloring method
	- \bullet O(log N) time complexity per timeslot
	- Nearly 100% throughput
	- Microsecond level latency
	- Work well under any traffic patterns

- **Introduction and Overview**
- **Preliminaries of Scheduling and Complex Coloring**
	- Frame-based Scheduling
	- Complex Coloring of Bipartite Graph
		- **Properties of Complex Coloring**
- **Parallel Complex Coloring**
- **Parallel Scheduling Algorithm**
- **Performance of Scheduling Algorithms**

- **Assumptions**
	- Time is slotted and packet size is fixed.
	- A batch of f consecutive timeslots is scheduled together.
- \blacksquare Pipelining implementation^[1]

Frame-based Scheduling

- **Constraint**
	- In each timeslot, at most one packet can be sent from each input and at most one packet can be received by each output.
	- It corresponds to the constraint of edge coloring problem that two edges incident to the same vertex must be colored with distinct colors.

Bipartite Graph Model

An $N \times N$ input-queued switch

- Input/output ports \Leftrightarrow vertex set X/Y
- Packets ⇔ edge set
- Timeslots ⇔ color set

(a) A 3×3 frame-based packet switch

(b) The corresponding bipartite graph model

Outline

- Introduction and Overview
- **Preliminaries of Scheduling and Complex Coloring**
	- **Frame-based Scheduling**
	- Complex Coloring of Bipartite Graph
		- **Properties of Complex Coloring**
- **Parallel Complex Coloring**
- **Parallel Scheduling Algorithm**
- **Performance of Scheduling Algorithms**

Edge Coloring Constraints

- Vertex constraint
	- Colors assigned to links incident to the same vertex are all distinct.

- Edge constraint
	- **Nariable-colored edge**
	- Constant-colored edge

Color-Exchange Operation

- Color-exchange operation preserves the consistency of vertex constraint.
- A color-exchange operation is effective if it does not increase the number of variables.

(a, b) Subgraph

A (a, b) variable is only allowed to move within a two-colored (a, b) subgraph to meet another variable.

Introduction and Overview

Preliminaries of Scheduling and Complex Coloring

- **Frame-based Scheduling**
- Complex Coloring of Bipartite Graph
	- Properties of Complex Coloring
- **Parallel Complex Coloring**
- **Parallel Scheduling Algorithm**
- **Performance of Scheduling Algorithms**
- Conclusion

- An optimal proper coloring of a bipartite graph only uses Δ colors. (Δ) : the maximum degree)
- A consistent coloring can be easily achieved by ∆ colors.

Optimality

- An optimal proper coloring of a bipartite graph only uses ∆ colors. (Δ) : the maximum degree)
- All variables of a bipartite graph can be eliminated by Kempe walks.

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.

Optimality

Parallelizability

■ Variables can be eliminated by color-exchange simultaneously.

• When new edges are added, only partial changes of the existing coloring are needed.

Outline

- **Introduction and Overview**
- **Preliminaries of Scheduling and Complex Coloring**
- **Parallel Complex Coloring**
	- Deadlock Variables
	- **Stopping Rule**
- **Parallel Scheduling Algorithm**
- **Performance of Scheduling Algorithms**

Parallel Complex Coloring

Principle of parallelization

For $G = (X \cup Y, E)$, simultaneous color exchanges can be performed on vertices in X and Y alternatively.

(b) Parallel processing

High efficiency of variable eliminations!

Outline

- **Introduction and Overview**
- **Preliminaries of Scheduling and Complex Coloring**
- **Parallel Complex Coloring**
	- Deadlock Variables
	- **Stopping Rule**
- **Parallel Scheduling Algorithm**
- **Performance of Scheduling Algorithms**
- Conclusion

Infinite Loop

 When variables step forward in the same direction, they may be trapped in an infinite loop.

Variables in deadlock are rare.

Outline

- **Introduction and Overview**
- **Preliminaries of Scheduling and Complex Coloring**
- **Parallel Complex Coloring**
	- Deadlock Variables
	- **Stopping Rule**
- **Parallel Scheduling Algorithm**
- **Performance of Scheduling Algorithms**
- Conclusion

Variable density $R(t) =$ # of variables $\frac{1}{\# \text{ of edges}}$ (after *t* iterations)

variable elimination rate $\alpha(t) =$ # of eliminated variables $\frac{1}{\text{minimize}}$ variables (of t^{th} iteration)

- Hitting time $h(t)$
	- Expected number of iterations needed for a variable to hit another variable of t^{th} iteration.
	- $h(t) \propto 1/\alpha(t)$.

Elimination Process

 $\Rightarrow R(t) = (1 - \alpha)^t R(0).$

For $0 < \epsilon \ll 1$, the required number of iterations T is given by $(1 - \alpha)^T R(0) = \epsilon.$

For $\alpha \ll 1$,

$$
T=\frac{h}{a}\ln\frac{R(0)}{\epsilon}.
$$

where h is $O(log |V|)$. [1]

Therefore, T is $O(log|V|)$.

Selection of Stopping Time

For a given variable density ϵ , the stopping time is

- **Introduction and Overview**
- **Preliminaries of Scheduling and Complex Coloring**
- **Parallel Complex Coloring**
- **Parallel Scheduling Algorithm**
- **Performance of Scheduling Algorithms**

Parallel Scheduling Algorithm

- Graph initialization
	- Arbitrary color assignment
- \blacksquare Perform color exchanges on vertices in X in parallel
- \blacksquare Perform color exchanges on vertices in Y in parallel
	- Repeat until no variable exists or stopping time expires.
- Coloring to Timeslot Assignment

Random color assignment.

Perform color exchanges on vertices in X **and** Y **alternatively.**

Stopping Condition

- C1: All variables have been eliminated.
- \blacksquare C2: The number of iterations reaches the stopping time T_s .
	- The remaining variables are ignored in the current frame and kept down in the next frame.

Coloring to Timeslot Assignment

 Edges of the same color constitute a matching that represents the scheduled permutation of a corresponding timeslot.

- **Introduction and Overview**
- **Preliminaries of Scheduling and Complex Coloring**
- **Parallel Complex Coloring**
- **Parallel Scheduling Algorithms**
- **Performance of Scheduling Algorithms**
	- **Complexity**
	- **Delay and Throughput**

Complexity

- The complexity of the frame-based scheduling algorithm is mainly determined by the processing time of *Parallel Complex Coloring*.
- The running time: $O(\Delta \log N) = O(\log^2 N)$
- The amortized complexity per timeslot: $O(log N)$. (frame size $f: O(log N)$)

Complexity Comparison

Comparison of scheduling algorithms for input-queued switches.

[1] N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," *IEEE/ACM Trans. Netw.*, vol. 7, no. 2, pp. 188–201, Apr. 1999.

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, "Achieving 100% Throughput in an Input-Queued Switch," *IEEE Trans. Commun.,* vol. 47, no. 8, pp. 1260–1267, 1999.

[3] P. Giaccone, B. Prabhakar, and D. Shah, "Randomized scheduling algorithms for input-queued switches," *IEEE J. Sel. Areas Commun.*, vol. 21, no. 4, pp. 642–655, 2003.

[4] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu, "Switch scheduling via randomized edge coloring," in *Proc. IEEE FOCS*, 2003, pp. 502-512.

[5] M. J. Neely, E. Modiano, Y. S. Cheng, "Logarithmic delay for $N \times N$ packet switches under the crossbar constraint," *IEEE/ACM Trans. Netw.*, vol. 15, no. 3, pp. 657–668, 2007.

Performance Evaluation

- Assumptions
	- Line rate: 10Gbps
	- Fixed cell size: 64Bytes (equivalent timeslot: 51.2ns)
	- Calculation capability: 20 GFLOPS (Cisco Nexus 5548P) (calculation requirement: ≤ 1024 operations per timeslot)
- **Performance comparison:** *iSLIP*^[1]
	- A heuristic arithmetic scheduling algorithm which has been used in commercial switches, such as Cisco Nexus 5548P.
	- \bullet $O(N \log N)$ time complexity.

The amortized complexity per timeslot per matching: $O(log N)$

Simulation result when the switch is fully loaded

- **Introduction and Overview**
- **Preliminaries of Scheduling and Complex Coloring**
- **Parallel Complex Coloring**
- **Parallel Scheduling Algorithms**
- **Performance of Scheduling Algorithms**
	- **Complexity**
	- Delay and Throughput

Delay and Throughput vs. N

- End-to-end delay
	- If a algorithm fails to compute a matching within a timeslot, it may take two or more timeslots which is considered in delay calculations.
- Input rate $\lambda = 0.7$

Delay and Throughput when $N = 300$

 The performance under non-uniform traffic is as good as that under uniform traffic

