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 Cell scheduling is indispensable to properly set up connection 

patterns to avoid output contentions.

Scheduling Problem[1]

[1] H. J. Chao, Z. Jing, and S. Y. Liew, IEEE Commun. Mag., vol. 41, no. 10, pp. 46–54, Oct. 2003.
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Bipartite Graph Model

 The cell-scheduling problem can be formulated as the bipartite-

graph matching (or edge coloring) problem.

Vertex 𝑥𝑖 (𝑦𝑗): input (output) port 𝑖 (𝑗)
Edge 𝑒𝑖𝑗: arrival packets from 𝑥𝑖 to 𝑦𝑗
Color: assigned timeslot for transmission
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Current Scheduling Algorithms

 Maximum Size Matching (iSLIP[1])

 Pros: 100% throughput under any uniform traffic 

 Cons: 𝑂 𝑁 log𝑁 on-line complexity

 Maximum Weighted Matching (iLQF, iOCF[2])

 Pros: 100% throughput under any traffic

 Cons: 𝑂 𝑁2 log𝑁 on-line complexity

 Frame-based scheduling (Fair-Frame[3])

 Pros: 100% throughput under any traffic 

 Cons: 𝑂 𝑁𝑓 on-line complexity (𝑓: frame size)

[1] N. McKeown,  IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr. 1999. 

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, IEEE Trans. Commun., vol. 47, no. 8, pp. 1260–1267, Aug. 1999.

[3] M. J. Neely, E. Modiano, Y. S. Cheng, IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 657–668, 2007.



Our Contribution

 A frame-based scheduling algorithm based on 

an algebraic edge coloring method

 𝑂 log𝑁 time complexity per timeslot

 Nearly 100% throughput 

 Microsecond level latency

 Work well under any traffic patterns
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Frame-based Scheduling 

 Assumptions

 Time is slotted and packet size is fixed.

 A batch of 𝑓 consecutive timeslots is scheduled together.

 Pipelining implementation[1]

t

(k-1)th frame kth frame (k+1)th frame 

(k-1)th frame kth frame 

(k-1)th frame 

Accumulating

Scheduling

Switching

t0 t0 + f t0 + 2f t0 + 3f

[1] B. Wu, K. L. Yeung, M. Hamdi, X. Li, IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 632-645, Apr. 2009.



 Constraint

 In each timeslot, at most one packet can be sent from each input and at 

most one packet can be received by each output.

 It corresponds to the constraint of edge coloring problem that two edges 

incident to the same vertex must be colored with distinct colors. 

Frame-based Scheduling 

[1] H. J. Chao, Z. Jing, and S. Y. Liew, IEEE Commun. Mag., vol. 41, no. 10, pp. 46–54, Oct. 2003.
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Bipartite Graph Model 

 An 𝑁 × 𝑁 input-queued switch

 Input/output ports ⇔ vertex set 𝑋/𝑌

 Packets ⇔ edge set

 Timeslots ⇔ color set

(a) A 3×3 frame-based packet switch
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Edge Coloring Constraints

 Vertex constraint

 Colors assigned to links incident 

to the same vertex are all distinct.

 Edge constraint

 Variable-colored edge

 Constant-colored edge

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.

Proper coloring of GConsistent coloring of G
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Color-Exchange Operation 

 Color-exchange operation preserves the consistency of vertex 

constraint.

 A color-exchange operation is effective if it does not increase 

the number of variables.

effective ✔ ineffective ✘



𝑎, 𝑏 Subgraph

 A 𝑎, 𝑏 variable is only allowed to 

move within a two-colored 𝑎, 𝑏
subgraph to meet another variable.
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Optimality 

 An optimal proper coloring of a bipartite graph only uses ∆
colors. (∆: the maximum degree)

 A consistent coloring can be easily achieved by ∆ colors.

{𝑔, 𝑟} No new color is introduced! 

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.



Optimality 

 An optimal proper coloring of a bipartite graph only uses ∆
colors. (∆: the maximum degree)

 All variables of a bipartite graph can be eliminated by Kempe

walks.

Only even cycles exist which 

contain even # of variables! [1]

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.
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Parallelizability

 Variables can be eliminated by color-exchange simultaneously.

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3



Rearrangeability

 When new edges are added, only partial changes of the existing 

coloring are needed.
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 Principle of parallelization

 For 𝐺 = (𝑋 ∪ 𝑌, 𝐸), simultaneous color exchanges can be performed on 

vertices in 𝑋 and 𝑌 alternatively.

High efficiency of variable eliminations!

Parallel Complex Coloring

(a) Consistent coloring

 Iteration 1

Iteration 3

Iteration 2

 Iteration 4

(c) Proper coloring

(b) Parallel processing
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Infinite Loop

 When variables step forward in the same direction, they may be 

trapped in an infinite loop.
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Deadlock Percentages V.S. Simulation Time

 Variables in deadlock are rare.

(a) |V|=128, D=1000

(b) |V|=1024, D=2000
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Notation

 Variable density

𝑅 𝑡 =
# of variables

# of edges
(after 𝑡 iterations)

 Variable elimination rate

𝛼 𝑡 =
# of eliminated variables

# of variables
(of 𝑡𝑡ℎ iteration)

 Hitting time ℎ 𝑡
 Expected number of iterations needed for a variable to hit another 

variable of 𝑡𝑡ℎ iteration.

 ℎ 𝑡 ∝ 1/𝛼(𝑡).



Elimination Process

 Suppose 𝛼 𝑡 = 𝛼 and ℎ 𝑡 = 𝑎/𝛼.

𝐸 𝑅 𝑡
⋕ 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑎𝑓𝑡𝑒𝑟 𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

− 𝐸 𝑅 𝑡 + 1
⋕ 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑎𝑓𝑡𝑒𝑟 (𝑡+1) 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

= 𝛼 𝐸 𝑅 𝑡
⋕ 𝑜𝑓 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑜𝑓 (𝑡+1)𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

⟹ 𝑅 𝑡 = 1 − 𝛼 𝑡𝑅 0 .
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Elimination Process

For 0 < 𝜖 ≪ 1, the required number of iterations 𝑇 is given by

1 − 𝛼 𝑇𝑅 0 = 𝜖.

For 𝛼 ≪ 1,

[1] A. Fronczak, P. Fronczak, and J. Hołyst, Phys. Rev. E, 70(5), 2004.
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where ℎ is 𝑂 log 𝑉 . [1]

Therefore, 𝑇 is 𝑂 log 𝑉 .
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Phase 1: Initial

 Variables are more likely to be 

eliminated when they are close 

together.
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Phase 2: Steady

 As the variable density decreases, 

the hitting time increases and thus 

the elimination rate slows down.
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Phase 3: Deadlock

 Remaining variables are likely 

being blocked in deadlock loops.
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Selection of Stopping Time

 For a given variable density 𝜖, the stopping time is

𝑇𝑠 ≈
ℎ

𝑎
ln

𝑅 𝑡1

𝜖
+ 𝑡1.
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Parallel Scheduling Algorithm

 Graph initialization

 Arbitrary color assignment

 Perform color exchanges on vertices in 𝑋 in parallel

 Perform color exchanges on vertices in 𝑌 in parallel

 Repeat until no variable exists or stopping time expires.

 Coloring to Timeslot Assignment

34



 Random color assignment.

Initialization
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Parallel Complex Coloring

 Perform color exchanges on vertices in 𝑋 and 𝑌 alternatively.
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Stopping Condition

 C1: All variables have been eliminated.

 C2: The number of iterations reaches the stopping time 𝑇𝑠.
 The remaining variables are ignored in the current frame and kept down 

in the next frame.
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Coloring to Timeslot Assignment

 Edges of the same color constitute a matching that represents 

the scheduled permutation of a corresponding timeslot.

1

2

3

1

2

3

1 → 2

2 → 3

3 → 1

slot  2 slot  1

1 → 1

2 → 2

3 → 3

1 → 1

3 → 2

slot 3

x1

x2

x3

y1

y2

y3

slot 3slot 1 slot 2



Outline 

 Introduction and Overview

 Preliminaries of Scheduling and Complex Coloring

 Parallel Complex Coloring

 Parallel Scheduling Algorithms

 Performance of Scheduling Algorithms

 Complexity

 Delay and Throughput



Complexity 

 The complexity of the frame-based scheduling algorithm is 

mainly determined by the processing time of Parallel Complex 

Coloring.

 The running time: 𝑂 Δ log𝑁 = 𝑂 log2𝑁

 The amortized complexity per timeslot: 𝑂 log𝑁 . 

(frame size 𝑓: 𝑂 log𝑁 )



Complexity Comparison 

 Comparison of scheduling algorithms for input-queued switches.

Research Work
Complexity per 

timeslot
Parallel Scheduling Granularity Methodology

iSLIP [1] 𝑂 𝑁 log𝑁 Yes Slot by slot Maximal size matching

iLQF [2] 𝑂 𝑁2 log𝑁 Yes Slot by slot Maximum weighted matching

LAURA [3] 𝑂 𝑁 log2𝑁 Yes Slot by slot Maximum weighted matching

Switch-Sched [4] 𝑂 𝑁𝑓 No
Frame by frame

(frame size 𝑓: 𝑂(𝑁2 ))
Greedy edge coloring

Fair-Frame [5] 𝑂 𝑁1.5 log𝑁 No
Frame by frame 

(frame size 𝑓: 𝑂 log𝑁 )
Maximum size matching

Our work 𝑂 log𝑁 Yes
Frame by frame 

(frame size 𝑓: 𝑂 log𝑁 )
Complex coloring 

[1] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr. 1999.

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% Throughput in an Input-Queued Switch,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1260–1267, 1999.

[3] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling algorithms for input-queued switches,” IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 642–655, 2003.

[4] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu, “Switch scheduling via randomized edge coloring,” in Proc. IEEE FOCS, 2003, pp. 502-512.

[5] M. J. Neely, E. Modiano, Y. S. Cheng, “Logarithmic delay for 𝑁 × 𝑁 packet switches under the crossbar constraint,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 657–668, 2007.



Performance Evaluation

 Assumptions 

 Line rate: 10Gbps

 Fixed cell size: 64Bytes (equivalent timeslot: 51.2ns)

 Calculation capability: 20 GFLOPS (Cisco Nexus 5548P)

(calculation requirement: ≤1024 operations per timeslot)

 Performance comparison: iSLIP[1]

 A heuristic arithmetic scheduling algorithm which has been used in 

commercial switches, such as Cisco Nexus 5548P.

 𝑂 𝑁 log𝑁 time complexity.

[1] N. McKeown,  IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr. 1999. 
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Delay and Throughput vs. 𝑁

 End-to-end delay

 If a algorithm fails to compute a matching within a timeslot, it may take 

two or more timeslots which is considered in delay calculations.

 Input rate 𝜆 = 0.7
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Delay and Throughput when 𝑁 = 300

 The performance under non-uniform traffic is as good as that 

under uniform traffic
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