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s Introduction and Overview



Scheduling Probleml!]

= Cell scheduling is indispensable to properly set up connection
patterns to avoid output contentions.
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[1]1 H. J. Chao, Z. Jing, and S. Y. Liew, IEEE Commun. Mag., vol. 41, no. 10, pp. 46-54, Oct. 2003.



Bipartite Graph Model

= The cell-scheduling problem can be formulated as the bipartite-
graph matching (or edge coloring) problem.
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Vertex x; (y;): Input (output) port i (j)
Edge e;;: arrival packets from x; to y,
Color: assigned timeslot for transmission



Current Scheduling Algorithms

= Maximum Size Matching (iSLIP!1)
= Pros: 100% throughput under any uniform traffic
= Cons: O(N log N) on-line complexity
= Maximum Weighted Matching (iLQF, iOCF[2))
= Pros: 100% throughput under any traffic
= Cons: O(N?logN) on-line complexity
= Frame-based scheduling (Fair-Framel3)
= Pros: 100% throughput under any traffic
= Cons: O(Nf) on-line complexity (f: frame size)

[1] N. McKeown, IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188-201, Apr. 1999.
[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, IEEE Trans. Commun., vol. 47, no. 8, pp. 1260-1267, Aug. 1999.
[3]1 M. J. Neely, E. Modiano, Y. S. Cheng, IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 657-668, 2007.



i Our Contribution

= A frame-based scheduling algorithm based on
an algebraic edge coloring method
= O(log N) time complexity per timeslot
= Nearly 100% throughput
= Microsecond level latency
= Work well under any traffic patterns
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= Preliminaries of Scheduling and Complex Coloring
= Frame-based Scheduling



Frame-based Scheduling

= Assumptions
= Time is slotted and packet size is fixed.
= A batch of f consecutive timeslots is scheduled together.

= Pipelining implementationl]
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[1] B. Wu, K. L. Yeung, M. Hamdi, X. Li, IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 632-645, Apr. 2009.



Frame-based Scheduling

s Constraint

= In each timeslot, at most one packet can be sent from each input and at
most one packet can be received by each output.

= |t corresponds to the constraint of edge coloring problem that two edges
Incident to the same vertex must be colored with distinct colors.
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Bipartite Graph Model

= An N X N input-queued switch
= Input/output ports < vertex set X/Y
= Packets & edge set
= Timeslots & color set

............ kth frame
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(a) A 3>3 frame-based packet switch (b) The corresponding bipartite graph model
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= Preliminaries of Scheduling and Complex Coloring

= Complex Coloring of Bipartite Graph



Edge Coloring Constraints

s \Vertex constraint X1 Y1

= Colors assigned to links incident
to the same vertex are all distinct.

Y2
Y3
= Edge constraint
= Variable-colored edge
= Constant-colored edge
Y1 X1 o Y1
Y2 X2 Y2
« constant
Y3 X3 0 VE;

Consistent coloring of G Proper coloring of G

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228-245.



Color-Exchange Operation

= Color-exchange operation preserves the consistency of vertex
constraint.

= A color-exchange operation is effective If it does not increase
the number of variables.

effective v/ ﬂ ﬂ Ineffective X
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(a, b) Subgraph

A (a, b) variable is only allowed to
move within a two-colored (a, b)
subgraph to meet another variable.

X1 3 Y1 X1 7 Y1
X, @ Y. = %@ Y2
X3 QY X3 QY
X1 Y1
— X@® y2

X3 QY
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= Preliminaries of Scheduling and Complex Coloring

= Properties of Complex Coloring



Optimality

= An optimal proper coloring of a bipartite graph only uses A
colors. (A: the maximum degree)

= A consistent coloring can be easily achieved by A colors.
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[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228-245.



Optimality

= An optimal proper coloring of a bipartite graph only uses A
colors. (A: the maximum degree)

= All variables of a bipartite graph can be eliminated by Kempe
walks.

. \ . \ Variables on open path can
“ always be eliminated! [l

®
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o ®
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Only even cycles exist which
} N }
® ®

contain even # of variables! [1]

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228-245.



Parallelizability

= Variables can be eliminated by color-exchange simultaneously.

Y1 Y1
Y2 Yo
Y3 Y3



Rearrangeability

= When new edges are added, only partial changes of the existing
coloring are needed.

X1 Y1 X1 Y1
X2 Y2 |:> X2 y2
™ New added edge
X3 Y3 X3 Y3
X1 Y1 X1 oy
X2 Y2 {3 x Y2
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= Parallel Complex Coloring



Parallel Complex Coloring

= Principle of parallelization

s ForG = (X UY,E), simultaneous color exchanges can be performed on
vertices in X and Y alternatively.

X1 K Y1 X1 N)Y1
X2 Y2 X2 Y2
X1 @ Y1 X1 @ Y1
X3 - Y3 X3 - Y3
Iteration 1 Iteration 2
X2 Y2 X2 Y2
X; @& Y1 X1@- Y1
X3 Y3 X3 Y3
(a) Consistent coloring (c) Proper coloring
X2 Y2 Xz Y2
X3 _ Y3 X3 - Y3
Iteration 3 Iteration 4

(b) Parallel processing

High efficiency of variable eliminations!
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= Parallel Complex Coloring
s Deadlock Variables



Infinite Loop

= When variables step forward in the same direction, they may be
trapped in an infinite loop.

X1 Y2 X1 Yo
Y1 X2 ':>Y1
X3 Y3 X3 Y3
iy
X1 2 X1 Y2 X1 Y2
Y1 X2 €A Y1 X2 <ay1 X2



Deadlock Percentages V.S. Simulation Ti

s Variables in deadlock are rare.
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= Parallel Complex Coloring

= Stopping Rule



Notation

= Variable density

# of variables

R(t) = 7 of edges (after t iterations)

s Variable elimination rate
# of eliminated variables
a(t) =

: of t" jteration
# of variables ( )

= Hitting time h(t)
= EXxpected number of iterations needed for a variable to hit another
variable of t*" iteration.

s h(t) < 1/a(t).



Elimination Process

s Suppose a(t) = a and h(t) = a/a.

[EIR(t) — |E[R(t+1) = alE|R(t)
. y . ) Z - . Z
# of variables # of variables # of eliminated variables
after titerations after (t+1) iterations of (t+1)th iteration

= R(t) = (1 — a)*R(0).



Elimination Process

For 0 < € « 1, the required number of iterations T is given by

(1—-a)TR(0) = €.
Fora < 1,
h R(O
T =—1In ( )
a €

where h is O(log|V]). 1]

Therefore, T 1S O (log|V]). 250810801 4 1275 7775.00oglV)
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[1] A. Fronczak, P. Fronczak, and J. Hotyst, Phys. Rev. E, 70(5), 2004. Number of vertices, |V|



Phase 1: Initial

= Variables are more likely to be
eliminated when they are close
together.

Phase 2

—
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Phase 2: Steady

0.6

= As the variable density decreases, o5,
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the hitting time increases and thus o4}
the elimination rate slows down. % 03}
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Phase 3: Deadlock

= Remaining variables are likely 05,

P 1as?ai‘1 Phase 2
I
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i
i
i
i
G
|
|

being blocked in deadlock loops. o4}
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Selection of Stopping Time

s For agiven variable density €, the stopping time is

h R
TS zEln (;1) I tl'

| — + — Simulation results R(t)
ol - - - - Fitting curve R(¢t)

\
102}
Phasel 1 Phase 2 | Phase 3
>« -1t -

Residual density, R(t)
o

~

Slopping timfe
i

0 t. 100 200 300 t, 400 T, 500
Iterations, t
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= Parallel Scheduling Algorithm



Parallel Scheduling Algorithm

Graph initialization
= Arbitrary color assignment

Perform color exchanges on vertices in X in parallel

Perform color exchanges on vertices in Y in parallel
= Repeat until no variable exists or stopping time expires.

Coloring to Timeslot Assignment

21



Initialization

= Random color assignment.
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Parallel Complex Coloring

= Perform color exchanges on vertices in X and Y alternatively.

X1 Y1 X1 Y1
X2 Y2 |:> X2 Y2
X3 Y3 X3 Y3
X1 3 Y1 X1
X2 Y2 <:| X2




Stopping Condition

s C1: All variables have been eliminated.

s C2: The number of iterations reaches the stopping time Ts.

= The remaining variables are ignored in the current frame and kept down
In the next frame.

(@)

X1 O Y1 X1
Xo Y2 Xo
X3 © Y3 X3 O Y3



Coloring to Timeslot Assignment

m Edges of the same color constitute a matching that represents
the scheduled permutation of a corresponding timeslot.

1-1 1510 152 1 1 X1 Y1
252 253 |-+—2 21— Xy Yo
i[3-2[3-3|[351 43 3 X3 Y3

{ slot3 slot 2 slot 1 i

PO St e S L : slot 1 slot 2 slot 3
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= Performance of Scheduling Algorithms
= Complexity



i Complexity

= The complexity of the frame-based scheduling algorithm is
mainly determined by the processing time of Parallel Complex
Coloring.

= The running time: 0(Alog N) = 0(log? N)
= The amortized complexity per timeslot: O(log N).
(frame size f: O(log N))



Complexity Comparison

s Comparison of scheduling algorithms for input-queued switches.

Research Work COT{::\?;:% per Parallel Scheduling Granularity Methodology
iISLIP[1] O(NlogN) Yes Slot by slot Maximal size matching
iLQF [2] O(N?logN) Yes Slot by slot Maximum weighted matching

LAURA [3] O(Nlog? N) Yes Slot by slot Maximum weighted matching

Switch-Sched [4] O(Nf) No (fralrzrzgrgiez?;/‘f?{nl\?z ) Greedy edge coloring

Fair-Frame [5] O(N'>logN) No (franfgasr?zeet;y: g?{g Z NY) Maximum size matching
Our work O(logN) Yes (franfgasr?zeet;y: g?{g Z NY) Complex coloring

[1] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188-201, Apr. 1999.

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% Throughput in an Input-Queued Switch,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1260-1267, 1999.
[3] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling algorithms for input-queued switches,” IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 642—655, 2003.

[4] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu, “Switch scheduling via randomized edge coloring,” in Proc. IEEE FOCS, 2003, pp. 502-512.

[5] M. J. Neely, E. Modiano, Y. S. Cheng, “Logarithmic delay for N X N packet switches under the crossbar constraint,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 657-668, 2007.




Performance Evaluation

= Assumptions
= Line rate: 10Gbps
= Fixed cell size: 64Bytes (equivalent timeslot: 51.2ns)
= Calculation capability: 20 GFLOPS (Cisco Nexus 5548P)
(calculation requirement: <1024 operations per timeslot)

= Performance comparison: iSLIPL

= A heuristic arithmetic scheduling algorithm which has been used in
commercial switches, such as Cisco Nexus 5548P.

= O(NlogN) time complexity.

[1] N. McKeown, IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188-201, Apr. 1999.



Complexity vs. N

= The amortized complexity per timeslot per matching: O(log N)
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= Performance of Scheduling Algorithms

= Delay and Throughput



Delay and Throughput vs. N

Average delay (us)

= End-to-end delay

= If aalgorithm fails to compute a matching within a timeslot, it may take
two or more timeslots which is considered in delay calculations.

m Inputrate A = 0.7
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Delay and Throughput when N = 300

= The performance under non-uniform traffic is as good as that

under uniform traffic
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