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 Cell scheduling is indispensable to properly set up connection 

patterns to avoid output contentions.

Scheduling Problem[1]

[1] H. J. Chao, Z. Jing, and S. Y. Liew, IEEE Commun. Mag., vol. 41, no. 10, pp. 46–54, Oct. 2003.
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Bipartite Graph Model

 The cell-scheduling problem can be formulated as the bipartite-

graph matching (or edge coloring) problem.

Vertex 𝑥𝑖 (𝑦𝑗): input (output) port 𝑖 (𝑗)
Edge 𝑒𝑖𝑗: arrival packets from 𝑥𝑖 to 𝑦𝑗
Color: assigned timeslot for transmission
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Current Scheduling Algorithms

 Maximum Size Matching (iSLIP[1])

 Pros: 100% throughput under any uniform traffic 

 Cons: 𝑂 𝑁 log𝑁 on-line complexity

 Maximum Weighted Matching (iLQF, iOCF[2])

 Pros: 100% throughput under any traffic

 Cons: 𝑂 𝑁2 log𝑁 on-line complexity

 Frame-based scheduling (Fair-Frame[3])

 Pros: 100% throughput under any traffic 

 Cons: 𝑂 𝑁𝑓 on-line complexity (𝑓: frame size)

[1] N. McKeown,  IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr. 1999. 

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, IEEE Trans. Commun., vol. 47, no. 8, pp. 1260–1267, Aug. 1999.

[3] M. J. Neely, E. Modiano, Y. S. Cheng, IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 657–668, 2007.



Our Contribution

 A frame-based scheduling algorithm based on 

an algebraic edge coloring method

 𝑂 log𝑁 time complexity per timeslot

 Nearly 100% throughput 

 Microsecond level latency

 Work well under any traffic patterns
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Frame-based Scheduling 

 Assumptions

 Time is slotted and packet size is fixed.

 A batch of 𝑓 consecutive timeslots is scheduled together.

 Pipelining implementation[1]

t

(k-1)th frame kth frame (k+1)th frame 

(k-1)th frame kth frame 

(k-1)th frame 

Accumulating

Scheduling

Switching

t0 t0 + f t0 + 2f t0 + 3f

[1] B. Wu, K. L. Yeung, M. Hamdi, X. Li, IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 632-645, Apr. 2009.



 Constraint

 In each timeslot, at most one packet can be sent from each input and at 

most one packet can be received by each output.

 It corresponds to the constraint of edge coloring problem that two edges 

incident to the same vertex must be colored with distinct colors. 

Frame-based Scheduling 

[1] H. J. Chao, Z. Jing, and S. Y. Liew, IEEE Commun. Mag., vol. 41, no. 10, pp. 46–54, Oct. 2003.
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Bipartite Graph Model 

 An 𝑁 × 𝑁 input-queued switch

 Input/output ports ⇔ vertex set 𝑋/𝑌

 Packets ⇔ edge set

 Timeslots ⇔ color set

(a) A 3×3 frame-based packet switch
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Edge Coloring Constraints

 Vertex constraint

 Colors assigned to links incident 

to the same vertex are all distinct.

 Edge constraint

 Variable-colored edge

 Constant-colored edge

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.
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Color-Exchange Operation 

 Color-exchange operation preserves the consistency of vertex 

constraint.

 A color-exchange operation is effective if it does not increase 

the number of variables.

effective ✔ ineffective ✘



𝑎, 𝑏 Subgraph

 A 𝑎, 𝑏 variable is only allowed to 

move within a two-colored 𝑎, 𝑏
subgraph to meet another variable.
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Optimality 

 An optimal proper coloring of a bipartite graph only uses ∆
colors. (∆: the maximum degree)

 A consistent coloring can be easily achieved by ∆ colors.

{𝑔, 𝑟} No new color is introduced! 

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.



Optimality 

 An optimal proper coloring of a bipartite graph only uses ∆
colors. (∆: the maximum degree)

 All variables of a bipartite graph can be eliminated by Kempe

walks.

Only even cycles exist which 

contain even # of variables! [1]

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.
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Parallelizability

 Variables can be eliminated by color-exchange simultaneously.
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Rearrangeability

 When new edges are added, only partial changes of the existing 

coloring are needed.
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 Principle of parallelization

 For 𝐺 = (𝑋 ∪ 𝑌, 𝐸), simultaneous color exchanges can be performed on 

vertices in 𝑋 and 𝑌 alternatively.

High efficiency of variable eliminations!

Parallel Complex Coloring

(a) Consistent coloring

 Iteration 1

Iteration 3

Iteration 2

 Iteration 4

(c) Proper coloring

(b) Parallel processing
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Infinite Loop

 When variables step forward in the same direction, they may be 

trapped in an infinite loop.
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Deadlock Percentages V.S. Simulation Time

 Variables in deadlock are rare.

(a) |V|=128, D=1000

(b) |V|=1024, D=2000
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Notation

 Variable density

𝑅 𝑡 =
# of variables

# of edges
(after 𝑡 iterations)

 Variable elimination rate

𝛼 𝑡 =
# of eliminated variables

# of variables
(of 𝑡𝑡ℎ iteration)

 Hitting time ℎ 𝑡
 Expected number of iterations needed for a variable to hit another 

variable of 𝑡𝑡ℎ iteration.

 ℎ 𝑡 ∝ 1/𝛼(𝑡).



Elimination Process

 Suppose 𝛼 𝑡 = 𝛼 and ℎ 𝑡 = 𝑎/𝛼.

𝐸 𝑅 𝑡
⋕ 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑎𝑓𝑡𝑒𝑟 𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

− 𝐸 𝑅 𝑡 + 1
⋕ 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑎𝑓𝑡𝑒𝑟 (𝑡+1) 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

= 𝛼 𝐸 𝑅 𝑡
⋕ 𝑜𝑓 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑜𝑓 (𝑡+1)𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

⟹ 𝑅 𝑡 = 1 − 𝛼 𝑡𝑅 0 .
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Elimination Process

For 0 < 𝜖 ≪ 1, the required number of iterations 𝑇 is given by

1 − 𝛼 𝑇𝑅 0 = 𝜖.

For 𝛼 ≪ 1,

[1] A. Fronczak, P. Fronczak, and J. Hołyst, Phys. Rev. E, 70(5), 2004.
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 Simulation results

 Fitting results
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Number of vertices, |V|

𝑇 =
ℎ
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ln
𝑅 0

𝜖
.

where ℎ is 𝑂 log 𝑉 . [1]

Therefore, 𝑇 is 𝑂 log 𝑉 .
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Phase 1: Initial

 Variables are more likely to be 

eliminated when they are close 

together.
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Phase 2: Steady

 As the variable density decreases, 

the hitting time increases and thus 

the elimination rate slows down.
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Phase 3: Deadlock

 Remaining variables are likely 

being blocked in deadlock loops.
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Selection of Stopping Time

 For a given variable density 𝜖, the stopping time is

𝑇𝑠 ≈
ℎ

𝑎
ln

𝑅 𝑡1

𝜖
+ 𝑡1.
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Parallel Scheduling Algorithm

 Graph initialization

 Arbitrary color assignment

 Perform color exchanges on vertices in 𝑋 in parallel

 Perform color exchanges on vertices in 𝑌 in parallel

 Repeat until no variable exists or stopping time expires.

 Coloring to Timeslot Assignment

34



 Random color assignment.
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Parallel Complex Coloring

 Perform color exchanges on vertices in 𝑋 and 𝑌 alternatively.
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Stopping Condition

 C1: All variables have been eliminated.

 C2: The number of iterations reaches the stopping time 𝑇𝑠.
 The remaining variables are ignored in the current frame and kept down 

in the next frame.
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Coloring to Timeslot Assignment

 Edges of the same color constitute a matching that represents 

the scheduled permutation of a corresponding timeslot.
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Complexity 

 The complexity of the frame-based scheduling algorithm is 

mainly determined by the processing time of Parallel Complex 

Coloring.

 The running time: 𝑂 Δ log𝑁 = 𝑂 log2𝑁

 The amortized complexity per timeslot: 𝑂 log𝑁 . 

(frame size 𝑓: 𝑂 log𝑁 )



Complexity Comparison 

 Comparison of scheduling algorithms for input-queued switches.

Research Work
Complexity per 

timeslot
Parallel Scheduling Granularity Methodology

iSLIP [1] 𝑂 𝑁 log𝑁 Yes Slot by slot Maximal size matching

iLQF [2] 𝑂 𝑁2 log𝑁 Yes Slot by slot Maximum weighted matching

LAURA [3] 𝑂 𝑁 log2𝑁 Yes Slot by slot Maximum weighted matching

Switch-Sched [4] 𝑂 𝑁𝑓 No
Frame by frame

(frame size 𝑓: 𝑂(𝑁2 ))
Greedy edge coloring

Fair-Frame [5] 𝑂 𝑁1.5 log𝑁 No
Frame by frame 

(frame size 𝑓: 𝑂 log𝑁 )
Maximum size matching

Our work 𝑂 log𝑁 Yes
Frame by frame 

(frame size 𝑓: 𝑂 log𝑁 )
Complex coloring 

[1] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr. 1999.

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% Throughput in an Input-Queued Switch,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1260–1267, 1999.

[3] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling algorithms for input-queued switches,” IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 642–655, 2003.

[4] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu, “Switch scheduling via randomized edge coloring,” in Proc. IEEE FOCS, 2003, pp. 502-512.

[5] M. J. Neely, E. Modiano, Y. S. Cheng, “Logarithmic delay for 𝑁 × 𝑁 packet switches under the crossbar constraint,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 657–668, 2007.



Performance Evaluation

 Assumptions 

 Line rate: 10Gbps

 Fixed cell size: 64Bytes (equivalent timeslot: 51.2ns)

 Calculation capability: 20 GFLOPS (Cisco Nexus 5548P)

(calculation requirement: ≤1024 operations per timeslot)

 Performance comparison: iSLIP[1]

 A heuristic arithmetic scheduling algorithm which has been used in 

commercial switches, such as Cisco Nexus 5548P.

 𝑂 𝑁 log𝑁 time complexity.

[1] N. McKeown,  IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr. 1999. 
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Delay and Throughput vs. 𝑁

 End-to-end delay

 If a algorithm fails to compute a matching within a timeslot, it may take 

two or more timeslots which is considered in delay calculations.

 Input rate 𝜆 = 0.7
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Delay and Throughput when 𝑁 = 300

 The performance under non-uniform traffic is as good as that 

under uniform traffic
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