A Parallel Complex Coloring Algorithm for Scheduling of Input-Queued Switches

Lingkang Wang, Tong Ye, Tony T. Lee, and Weisheng Hu

State Key Lab of Advanced Optical Communications and Networks Shanghai Jiao Tong University

Introduction and Overview

- Preliminaries of Scheduling and Complex Coloring
- Parallel Complex Coloring
- Parallel Scheduling Algorithm
- Performance of Scheduling Algorithms

 Cell scheduling is indispensable to properly set up connection patterns to avoid output contentions.

• The cell-scheduling problem can be formulated as the bipartitegraph matching (or edge coloring) problem.

Vertex $x_i (y_j)$: input (output) port i (j)Edge e_{ij} : arrival packets from x_i to y_j Color: assigned timeslot for transmission

- Maximum Size Matching (iSLIP^[1])
 - Pros: 100% throughput under any uniform traffic
 - Cons: $O(N \log N)$ on-line complexity
- Maximum Weighted Matching (iLQF, iOCF^[2])
 - Pros: 100% throughput under any traffic
 - Cons: $O(N^2 \log N)$ on-line complexity
- Frame-based scheduling (Fair-Frame^[3])
 - Pros: 100% throughput under any traffic
 - Cons: O(Nf) on-line complexity (f: frame size)

^[1] N. McKeown, IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr. 1999.

^[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, IEEE Trans. Commun., vol. 47, no. 8, pp. 1260–1267, Aug. 1999.

^[3] M. J. Neely, E. Modiano, Y. S. Cheng, IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 657–668, 2007.

Our Contribution

- A frame-based scheduling algorithm based on an algebraic edge coloring method
 - O(log N) time complexity per timeslot
 - Nearly 100% throughput
 - Microsecond level latency
 - Work well under any traffic patterns

Introduction and Overview

Preliminaries of Scheduling and Complex Coloring

- Frame-based Scheduling
- Complex Coloring of Bipartite Graph
 - Properties of Complex Coloring
- Parallel Complex Coloring
- Parallel Scheduling Algorithm
- Performance of Scheduling Algorithms

- Assumptions
 - Time is slotted and packet size is fixed.
 - A batch of *f* consecutive timeslots is scheduled together.
- Pipelining implementation^[1]

Switching			$(k-1)^{\text{th}}$ frame	
Scheduling		$(k-1)^{\text{th}}$ frame	k th frame	
Accumulating	$(k-1)^{\text{th}}$ frame	<i>k</i> th frame	$(k+1)^{\text{th}}$ frame	
	t_0 t_0 -	$+f$ t_0+	$-2f t_0 +$	- 3f t

Frame-based Scheduling

- Constraint
 - In each timeslot, at most one packet can be sent from each input and at most one packet can be received by each output.
 - It corresponds to the constraint of edge coloring problem that two edges incident to the same vertex must be colored with distinct colors.

Bipartite Graph Model

- An $N \times N$ input-queued switch
 - Input/output ports \Leftrightarrow vertex set X/Y
 - Packets \Leftrightarrow edge set
 - Timeslots \Leftrightarrow color set

(a) A 3×3 frame-based packet switch

(b) The corresponding bipartite graph model

- Introduction and Overview
- Preliminaries of Scheduling and Complex Coloring
 - Frame-based Scheduling
 - Complex Coloring of Bipartite Graph
 - Properties of Complex Coloring
- Parallel Complex Coloring
- Parallel Scheduling Algorithm
- Performance of Scheduling Algorithms

Edge Coloring Constraints

- Vertex constraint
 - Colors assigned to links incident to the same vertex are all distinct.

- Edge constraint
 - Variable-colored edge
 - Constant-colored edge

Color-Exchange Operation

- Color-exchange operation preserves the consistency of vertex constraint.
- A color-exchange operation is effective if it does not increase the number of variables.

(*a*, *b*) Subgraph

 A (a, b) variable is only allowed to move within a two-colored (a, b) subgraph to meet another variable.

 x_3

y₃

Introduction and Overview

Preliminaries of Scheduling and Complex Coloring

- Frame-based Scheduling
- Complex Coloring of Bipartite Graph
 - Properties of Complex Coloring
- Parallel Complex Coloring
- Parallel Scheduling Algorithm
- Performance of Scheduling Algorithms
- Conclusion

- An optimal proper coloring of a bipartite graph only uses Δ colors. (Δ: the maximum degree)
- A consistent coloring can be easily achieved by Δ colors.

Optimality

- Optimality
- An optimal proper coloring of a bipartite graph only uses Δ colors. (Δ: the maximum degree)
- All variables of a bipartite graph can be eliminated by Kempe walks.

[1] T. Lee, Y. Wan, and H. Guan, Int. J. Comput. Math. 90 (2013), 228–245.

• Variables can be eliminated by color-exchange simultaneously.

• When new edges are added, only partial changes of the existing coloring are needed.

- Introduction and Overview
- Preliminaries of Scheduling and Complex Coloring
- Parallel Complex Coloring
 - Deadlock Variables
 - Stopping Rule
- Parallel Scheduling Algorithm
- Performance of Scheduling Algorithms

Parallel Complex Coloring

Principle of parallelization

For G = (X ∪ Y, E), simultaneous color exchanges can be performed on vertices in X and Y alternatively.

(b) Parallel processing

High efficiency of variable eliminations!

- Introduction and Overview
- Preliminaries of Scheduling and Complex Coloring
- Parallel Complex Coloring
 - Deadlock Variables
 - Stopping Rule
- Parallel Scheduling Algorithm
- Performance of Scheduling Algorithms
- Conclusion

Infinite Loop

• When variables step forward in the same direction, they may be trapped in an infinite loop.

Variables in deadlock are rare.

- Introduction and Overview
- Preliminaries of Scheduling and Complex Coloring
- Parallel Complex Coloring
 - Deadlock Variables
 - Stopping Rule
- Parallel Scheduling Algorithm
- Performance of Scheduling Algorithms
- Conclusion

• Variable density $R(t) = \frac{\# \text{ of variables}}{\# \text{ of edges}} \text{ (after } t \text{ iterations)}$

• Variable elimination rate $\alpha(t) = \frac{\# \text{ of eliminated variables}}{\# \text{ of variables}} (\text{ of } t^{th} \text{ iteration})$

- Hitting time h(t)
 - Expected number of iterations needed for a variable to hit another variable of tth iteration.
 - $h(t) \propto 1/\alpha(t)$.

Elimination Process

 $\Rightarrow R(t) = (1 - \alpha)^t R(0).$

For $0 < \epsilon \ll 1$, the required number of iterations *T* is given by $(1 - \alpha)^T R(0) = \epsilon$.

For $\alpha \ll 1$,

$$T = \frac{h}{a} \ln \frac{R(0)}{\epsilon}.$$

where h is $O(\log|V|)$.^[1]

Therefore, T is $O(\log |V|)$.

Selection of Stopping Time

• For a given variable density ϵ , the stopping time is

- Introduction and Overview
- Preliminaries of Scheduling and Complex Coloring
- Parallel Complex Coloring
- Parallel Scheduling Algorithm
- Performance of Scheduling Algorithms

Parallel Scheduling Algorithm

- Graph initialization
 - Arbitrary color assignment
- Perform color exchanges on vertices in *X* in parallel
- Perform color exchanges on vertices in Y in parallel
 - Repeat until no variable exists or stopping time expires.
- Coloring to Timeslot Assignment

Random color assignment.

• Perform color exchanges on vertices in *X* and *Y* alternatively.

Stopping Condition

- C1: All variables have been eliminated.
- C2: The number of iterations reaches the stopping time T_s .
 - The remaining variables are ignored in the current frame and kept down in the next frame.

Coloring to Timeslot Assignment

 Edges of the same color constitute a matching that represents the scheduled permutation of a corresponding timeslot.

- Introduction and Overview
- Preliminaries of Scheduling and Complex Coloring
- Parallel Complex Coloring
- Parallel Scheduling Algorithms
- Performance of Scheduling Algorithms
 - Complexity
 - Delay and Throughput

Complexity

- The complexity of the frame-based scheduling algorithm is mainly determined by the processing time of *Parallel Complex Coloring*.
- The running time: $O(\Delta \log N) = O(\log^2 N)$
- The amortized complexity per timeslot: O(log N).
 (frame size f: O(log N))

Complexity Comparison

• Comparison of scheduling algorithms for input-queued switches.

Research Work	Complexity per timeslot	Parallel	Scheduling Granularity	Methodology
iSLIP[1]	$O(N \log N)$	Yes	Slot by slot	Maximal size matching
iLQF [2]	$O(N^2 \log N)$	Yes	Slot by slot	Maximum weighted matching
LAURA [3]	$O(N \log^2 N)$	Yes	Slot by slot	Maximum weighted matching
Switch-Sched [4]	O(Nf)	No	Frame by frame (frame size $f: O(N^2)$)	Greedy edge coloring
Fair-Frame [5]	$O(N^{1.5}\log N)$	No	Frame by frame (frame size <i>f</i> : <i>O</i> (log <i>N</i>))	Maximum size matching
Our work	$O(\log N)$	Yes	Frame by frame (frame size $f: O(\log N)$)	Complex coloring

[1] N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," *IEEE/ACM Trans. Netw.*, vol. 7, no. 2, pp. 188–201, Apr. 1999.

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, "Achieving 100% Throughput in an Input-Queued Switch," IEEE Trans. Commun., vol. 47, no. 8, pp. 1260–1267, 1999.

[3] P. Giaccone, B. Prabhakar, and D. Shah, "Randomized scheduling algorithms for input-queued switches," IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 642–655, 2003.

[4] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu, "Switch scheduling via randomized edge coloring," in Proc. IEEE FOCS, 2003, pp. 502-512.

[5] M. J. Neely, E. Modiano, Y. S. Cheng, "Logarithmic delay for N × N packet switches under the crossbar constraint," IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 657–668, 2007.

Performance Evaluation

- Assumptions
 - Line rate: 10Gbps
 - Fixed cell size: 64Bytes (equivalent timeslot: 51.2ns)
 - Calculation capability: 20 GFLOPS (Cisco Nexus 5548P)
 (calculation requirement: ≤1024 operations per timeslot)
- Performance comparison: *i*SLIP^[1]
 - A heuristic arithmetic scheduling algorithm which has been used in commercial switches, such as Cisco Nexus 5548P.
 - $O(N \log N)$ time complexity.

• The amortized complexity per timeslot per matching: $O(\log N)$

Simulation result when the switch is fully loaded

- Introduction and Overview
- Preliminaries of Scheduling and Complex Coloring
- Parallel Complex Coloring
- Parallel Scheduling Algorithms
- Performance of Scheduling Algorithms
 - Complexity
 - Delay and Throughput

Delay and Throughput vs. N

- End-to-end delay
 - If a algorithm fails to compute a matching within a timeslot, it may take two or more timeslots which is considered in delay calculations.
- Input rate $\lambda = 0.7$

Delay and Throughput when N = 300

 The performance under non-uniform traffic is as good as that under uniform traffic

