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Abstract— In recent years, connection-based slotted-Aloha
(CS-Aloha) has been proposed to improve the performance of
random access networks. In this protocol, each node attempts to
send a request to the access point (AP) before packet transmis-
sion. Once this attempt is successful, the node can transmit up to
M packets to the AP. Previous works indicated that the CS-Aloha
can achieve a higher throughput than the classical slotted
Aloha (S-Aloha), if M is large enough. However, the impact
of M on the delay performance and stability is still unknown.
To solve this problem, we model each node of the CS-Aloha as a
vacation queueing system with limited service discipline, where
we consider each batch of packet transmissions as a busy period,
and the attempt process between two successive busy periods as a
vacation period. We derive the delay distribution, which is turned
out to be a geometric distribution. From this result, we further
obtain the mean delay, the delay jitter, and the bounded delay
region. Our analysis shows that increasing M can accelerate
the clean-up of the buffer in each node and thus decrease the
attempt rate, which can reduce the average time needed by a
node to make a successful attempt. As a result, a large M can
decrease the mean delay and the delay jitter, and enlarge the
bounded delay region. Also, we obtain the condition to achieve
the minimum mean delay under different values of M .

Index Terms— Slotted Aloha, connection-based, vacation
model, random access.

I. INTRODUCTION

SLOTTED Aloha (S-Aloha) is a medium access control
(MAC) protocol designed for wireless random access

networks. The S-Aloha is easy to implement and can pro-
vide low access delay when the traffic load is small [1]–[5].
Because of such advantages, the S-Aloha or Aloha-like proto-
cols have been widely employed in different kinds of access
networks [6]–[11].

Manuscript received February 24, 2020; revised August 12, 2020; accepted
October 1, 2020; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor A. Banchs. Date of publication October 29, 2020; date of current
version February 17, 2021. This work was supported in part by the National
Science Foundation of China under Grant 61671286 and Grant 61571288,
in part by the Shenzhen Science and Technology Innovation Committee
under Grant JCYJ20180508162604311, and in part by the National Key
Research and Development Program of China under Grant 2018YFB1800803.
(Corresponding author: Tong Ye.)

Huanhuan Huang, Tong Ye, and Weiqiang Sun are with the State Key Labo-
ratory of Advanced Optical Communication Systems and Networks, Shanghai
Jiao Tong University, Shanghai 200240, China (e-mail: huanghuanhuan@
sjtu.edu.cn; yetong@sjtu.edu.cn; sunwq@sjtu.edu.cn).

Tony T. Lee was with the State Key Laboratory of Advanced Optical Com-
munication Systems and Networks, Shanghai Jiao Tong University, Shanghai
200240, China. He is now with the School of Science and Engineering,
The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
(e-mail: tonylee@cuhk.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2020.3029774, provided by the authors.

Digital Object Identifier 10.1109/TNET.2020.3029774

However, the throughput of the S-Aloha is low when
the traffic load is moderate or high. In the S-Aloha, each
backlogged node attempts to transmit a packet at the beginning
of each time slot with probability r, called transmission
probability in [12]. If only one node makes an attempt in this
slot, this node can transmit the packet successfully; otherwise,
multiple packets collide with each other and no transmissions
are successful. No matter what happens in this slot, all the
backlogged nodes will repeat the procedure in the next slot.
Owing to frequent collisions, the maximum throughput of the
S-Aloha is only e−1 [3].

Recently, connection-based slotted-Aloha (CS-Aloha) [13]
was proposed to reduce the collision overhead incurred by
channel competition. In this protocol, each node sends a
short request with probability r to the access point (AP)
before packet transmission. Once the request is transmitted
successfully, the node can send up to M packets, where M
is called batch size in this paper. It was shown in [13] that
the throughput of the CS-Aloha increases with M , and will
be larger than that of the S-Aloha if M exceeds a threshold.
Owing to elegant throughput performance, the CS-Aloha has
been gradually applied to underwater acoustic communication
[14]–[18] and cellular-based Internet of things [19], [20].

Though the throughput performance of the CS-Aloha has
been well studied, its delay performance and stability are still
unknown. Intuitively, as M increases, a node may monop-
olize the channel for a long time once it succeeds, which
may increase the packet delay of other nodes. This, in turn,
increases the number of packets accumulated in the buffer
before a node starts a busy period. It seems that increasing M
will deteriorate the delay performance, such as mean delay
and delay jitter. To understand this problem, it is necessary
to study the impact of M on the delay performance of the
CS-Aloha.

A. Previous Work

Up to now, most of the previous work focused on the
throughput analysis of Aloha-like protocols. Only a few ana-
lyzed the delay performance of Aloha-like protocols.

Ref. [3], [4], [21]–[28] studied the throughput of the
S-Aloha with a large node population under saturated con-
ditions, where the buffer of each node is always non-empty.
In the analysis, the number of attempts in each slot was
assumed to be a Poisson random variable with mean value
of G, called attempt rate. Ref. [3], [4], [22]–[28] showed
that the maximum throughput of the S-Aloha was e−1 if the
propagation delay between the nodes and the AP and the
overhead of acknowledgement (ACK) were ignored.
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Ref. [13] investigated the throughput of the CS-Aloha. The
result in [13] showed that the throughput of the CS-Aloha
increased with the batch size, and was larger than that of
the S-Aloha if the batch size exceeded a threshold. However,
Ref. [13] did not consider the queueing process of the packets
in the buffer, and thus did not obtain the delay performance.

Ref. [25], [29]–[31] analyzed the delay performance of
the S-Aloha in unsaturated networks. In particular, these
works employed multi-dimensional Markov chains to delineate
the dependency among the queues of the nodes. However,
these models were too complex to be solved. For example,
Ref. [29]–[31] modeled an n-node S-Aloha network as an
n-dimensional Markov chain. When n > 2, the state space
of the Markov chain was too large and the model became
unsolvable.

Ref. [32] focused on the delay analysis of the S-Aloha,
where all the nodes were statistically identical. Also, Ref. [32]
assumed that the node population was large such that the
dependency among different queues can be ignored. The
model in [32] took advantage of the feature of the S-Aloha,
where each head-of-line (HOL) packet experiences the same
attempt process before it is successfully transmitted. Hence,
Ref. [32] modeled each node as a Geo/G/1 queue, where the
service time of each packet was defined as the duration from
the slot when it became the HOL packet to the slot when it was
successfully transmitted. This model devised a Markov chain
to delineate the attempt process. Using this model, Ref. [32]
derived the first and the second moments of the service time
and the bounded delay region, which was defined as the value
range of transmission probability r where the S-Aloha can
achieve a bounded delay.

However, the model in [32] cannot be used to analyze
the CS-Aloha. Unlike that in the S-Aloha, the node in the
CS-Aloha can send multiple packets after each successful
attempt, which means different packets have different expe-
riences. If a packet becomes a HOL packet when the node
does not take over the channel, it has to experience the attempt
process before successful transmission. However, those pack-
ets that are waiting behind the HOL packet in the buffer
when the node won the competition can be transmitted directly
without any attempt. Therefore, the attempt process cannot be
regarded as a part of the service of a packet in the analysis of
the CS-Aloha.

In summary, there is no queueing model available for the
delay performance analysis of the CS-Aloha.

B. Our Contributions

In this paper, we develop a vacation queueing model with
limited-service discipline to analyze the CS-Aloha, where each
node can transmit up to M packets once it succeeds in channel
competition. Our goal is to study the impact of batch size M
on the delay performance and the stable condition of the
CS-Aloha.

Different from [32], we model each node in the CS-Aloha as
a Geo/D/1 queue with vacation and limited service, where each
batch of packet transmission is considered as a busy period and
the attempt process between two successive busy periods is
treated as a vacation period. We show that the vacation period
is governed by the packet arrival process and the attempt
process. Similar queueing systems with vacations controlled

by the arrival process were considered in [33], in which the
results demonstrated that the key to tackle the delay analysis is
the distribution of the number of arrivals in a vacation period.
Moreover, the number of attempts in each free slot is a Poisson
random variable, and the successful probability of each attempt
initiated by a node depends on the attempt rate. Thus, we first
start our analysis with the derivation of the distribution of the
number of arrivals during a vacation period, and then calculate
the attempt rate. We derive this distribution using renewal
equations, which are built up according to the feature of the
attempt process, and attempt rate G using a Lindley’s equation,
which is established based on the limited service discipline
of the CS-Aloha. We finally obtain the delay distribution,
the mean delay, the delay jitter, and the bounded delay region.
Interestingly, we find that, though the CS-Aloha adopts the
limited-service discipline, its delay distribution is a geometric
distribution when the number of nodes n is sufficiently large,
say n ≥ 10. This is attributed to the fact that the attempt
process of each node in the CS-Aloha is essentially a series
of Bernoulli trials.

Our analytical results indicate that increasing M can sup-
press the queue length of each node, accelerate the clean-up
of the buffer and thus decrease the attempt rate, which can
reduce the average time needed by a node to make a successful
attempt. Therefore, the CS-Aloha with M > 1 can decrease
the mean delay and the delay jitter, and enlarge the bounded
delay region.

In summary, the contributions of this paper are as follows:
(1) A vacation queueing model is built up to derive the delay

distribution of the CS-Aloha, which turns out to be a
geometric distribution when n is sufficiently large.

(2) The stable conditions of the CS-Aloha are derived, from
which we obtain the bounded delay region in terms of
transmission probability.

(3) It is found that increasing M can remarkably improve
the delay performance of the CS-Aloha and enlarge the
bounded delay region.

(4) The optimum transmission probability is derived to
achieve the minimum mean delay under different values
of M .

The rest of this paper is organized as follows. Section II
presents the working process of CS-Aloha and discusses
its saturated throughput performance. Section III devises a
vacation model to delineate the queueing behavior of each
node, and analyzes the distribution of the number of arrivals
during a vacation period. Section IV derives the attempt rate.
Section V studies how the batch size M influences the mean
delay and the bounded delay region. Section VI gives the delay
distribution and studies how the delay jitter changes with M .
Section VII demonstrates how our analytical model can be
applied to the practical scenario. Section VIII concludes this
paper.

II. OVERVIEW OF CS-ALOHA

The CS-Aloha network is a time slotted system, where n
nodes communicate with an AP. As shown in Fig. 1, a time
slot is defined as the time interval from the epoch when a
node sends a request to the epoch when it receives the ACK
from the AP. The node spends 1 − δ portion of the time slot
on request transmission and the remaining δ on receiving the
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Fig. 1. Illustration of a two-node CS-Aloha with M = 2, where B, V , and C denote busy period, vacation period, and cycle time, respectively.

ACK, where 0 < δ < 1. The size of a packet is typically
larger than that of a request. Let τ denote the transmission
time of a packet, where τ ≥ 1 − δ. Since the node can send
the next packet only after it receives the ACK from the AP,
we consider the interval from the time point when a packet
is transmitted to that when it is acknowledged as the service
time of the packet. Let X denote the service time of a packet.
Clearly X = τ + δ.

Fig. 1 illustrates the working process of the CS-Aloha
network. If the channel is free in a slot, each backlogged node
attempts to send a request with transmission probability r.
Each node maintains a virtual gate in the buffer. At the
beginning of each slot in which the node makes an attempt,
the node puts the first K packets inside the gate, where K is
equal to the smaller of the queue length and a preset integer
M . Also, the node appends this information to the request.
If the AP does not receive the request successfully, the node
will make an attempt with probability r in the next slot;
otherwise, the AP will broadcast an ACK to all the nodes,
such that all the other nodes can know that the following KX
slots have been reserved. In other words, the successful node
will take over the channel and send out K packets in the
gate, while other nodes will keep silent in the next KX time
slots. Once the AP receives a packet, it will feed back an
ACK to this node to acknowledge the successful transmis-
sion of this packet. An example is plotted in Fig. 1, where
M = 2.

To analyze the CS-Aloha, we adopt the following assump-
tions throughout this paper:
A1. The channel is error free.
A2. The number of nodes, denoted by n, is sufficiently large.
A3. All the nodes are statistically identical, which was widely

adopted in the analysis of Aloha-like protocols [22], [32],
[34]–[39].

A4. Each node has a packet arrival at the beginning of a slot
with probability λ, and thus the aggregate arrival rate of
all the nodes is λ̂ = nλ packets/slot.

A5. The service time of each packet X is an integer.
A6. Each node has an infinite buffer and transmits the packets

in a first-in-first-out manner.
According to A2, in a free slot that is not reserved by a node,
the number of attempts is approximately a Poisson random
variable [22], [32], [39], the mean of which is called the
attempt rate and denoted by G.

The network throughput is defined as the fraction of the
time that the channel spends on packet transmissions. Ref. [13]
studied the saturated throughput of the CS-Aloha. When the
network is saturated, each node always has packets to send,
and thus G = nr. It follows that the probability that only one
node makes an attempt in a free slot is Ge−G = nre−nr.
After a node succeeds, the channel will transmit packets for
this node in the next MX slots. Hence, the average number of
time slots between two successive periods when the channel
is busy transmitting is 1/(nre−nr). Clearly, these slots can be
regarded as the collision overhead for packet transmissions.
According to [13], the fraction of the slots during which the
channel is busy is given by

ρsat =
MX

1/(nre−nr) + MX
. (1)

Remember that only time Mτ in the MX slots is spent on
packet transmissions. We thus have the saturated throughput
as follows:

ηsat = ρsat · Mτ

MX
=

τ
1

Mnre−nr + X
, (2)

where 1/(Mnre−nr) is the amortized collision overhead to
transmit a packet. When M = 1, this overhead is significant,
and the channel needs 1/(nre−nr) time slots for each packet
transmission. When M > 1, the overhead is shared by multiple
packets and thus the throughput is improved. Particularly
when M→∞, the collision overhead can be ignored and the
throughput approaches τ/X .

As [13] pointed out, if M is large enough, the CS-Aloha
can achieve a higher throughput than the S-Aloha. Different
from that in the CS-Aloha, each node in the S-Aloha competes
for the channel by directly sending the HOL packet, instead
of a request. If the node in the S-Aloha transmits the HOL
packet successfully, it releases the channel and repeats channel
competition in the next slot. That is, each HOL packet has to
suffer an attempt process before it is successfully transmitted.
Similarly, the probability that only one node makes an attempt
in a slot is nre−nr. It follows that the throughput of the
S-Aloha is

η̂sat = nre−nr τ

X
.

When batch size M is small, the throughput of the
CS-Aloha may be less than that of the S-Aloha because the
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CS-Aloha needs to send a request before packet transmission.
For example, when M = 1 and X = 1, there is

ηsat =
τ

1
nre−nr + 1

< η̂sat =
τ
1

nre−nr

. (3)

When M increases such that the volume of the data that
the node can send each time is large enough to offset the
overhead incurred by the request, the CS-Aloha achieves a
higher throughput than the S-Aloha [13]. Comparing ηsat and
η̂sat, we find that the CS-Aloha outperforms the S-Aloha if

M ≥
⌈

1
X(1 − nre−nr)

⌉
. (4)

For example, M ≥ 2 is large enough for the CS-Aloha to
achieve a higher throughput than the S-Aloha if X = 1 and
nr = 1, and M ≥ 1 is enough if X = 2 and nr = 1.

In practice, networks usually operate under the unsaturated
condition, where the buffer of the node may sometimes be
empty. To provide guaranteed quality of experience (QoE),
the access network should operate in a stable state, where the
mean delay is bounded. Note that the aggregate packet arrival
rate of the network is λ̂ and the capacity that the CS-Aloha can
provide is ρsat/X . To keep the network stable, it is necessary
to ensure

λ̂ <
ρsat

X
=

M

1/(nre−nr) + MX
. (5)

However, it is unknown that if Eq. (5) is also a sufficient
condition for the stability of the CS-Aloha. Furthermore,
the user expects the mean delay and the delay jitter to be
as small as possible, which requires a careful selection of
parameters, such as r and M . Hence, it is necessary to study
the delay performance of the CS-Aloha.

III. VACATION QUEUEING MODEL FOR AN ACCESS NODE

In the CS-Aloha, the working process of each node can be
divided into cycles, each of which is defined as the duration
between two consecutive time points that the node begins to
send a batch of packets. As shown in Fig. 1, a cycle, denoted
by C, consists of a busy period, denoted by B, followed by
a vacation period, denoted by V . When the node successfully
sends a request, it immediately starts a busy period, during
which all the packets inside the virtual gate are sent out.
After the busy period, the node releases the channel and a
vacation period begins. This node will compete for the channel
immediately after it releases the channel if its buffer is not
empty; otherwise, it will do that only after a new packet
arrives. The vacation period ends at the slot when the node
succeeds in the channel competition again. This implies that
the vacation period is influenced by packet arrival process.

Therefore, according to assumptions A4 and A5, each node
in the CS-Aloha can be regarded as a Geo/D/1 queue with
vacation period governed by the packet arrival process. The
key to delay analysis for this kind of queueing system is
to derive the distribution of the number of arrivals during a
vacation period, similar to [33]. In the CS-Aloha, a vacation
period of a node may include multiple busy periods of other
nodes. As illustrated in Fig. 1, the first vacation period of
node 2 includes one busy period of node 1. This implies that
the distribution of the number of arrivals during the vacation

period depends on the distribution of that during the busy
period. In the following, we derive these two distributions.

A. Distribution of the Number of Arrivals During the
Busy Period

Let L be the number of arrivals during a busy period. Given
the busy period B, L is a binomial random variable according
to assumption A4. We have B = KX slots since K packets
are served in a busy period. Define kj = Pr{K = j} as the
probability that j packets are served in a busy period, where
j = 1, 2, · · · , M . The generating function of kj is K(z) �
E[zK ] =

∑M
j=1 kjz

j . It follows that the probability generating
function of the number of arrivals during the busy period is
given by

L(z) = E[zL]

=
M∑

j=1

E[zL|K = j]kj

=
M∑

j=1

kj

[
jX∑
i=0

(
jX

i

)
λi(1 − λ)jX−izi

]

=
M∑

j=1

kj(1 − λ + λz)jX

= K[(1 − λ + λz)X ]
= 1 + λK �(1)X(z − 1)

+
λ2

2
[K ��(1)X2 + K �(1)X(X − 1)](z − 1)2 + · · · .

(6)

With the increase of node population n, for a given λ̂,
the packet arrival rate of each node λ = λ̂

n decreases in
the order of o( 1

n ). When n is sufficiently large, L(z) can be
expressed as

L(z) = 1 − λK �(1)X + λK �(1)Xz + o

(
1
n

)

= 1 − λB + λBz + o

(
1
n

)
, (7)

where B = K �(1)X is the mean busy period. Equation (7)
clearly indicates that the distribution of L approaches a
Bernoulli distribution with the mean λB. In other words, when
n is sufficiently large, λ is such small that the probability that
more than one packet arrives at the node during the busy period
is negligible.

B in (7) can be determined as follows. In an unsaturated
network, the successful node will start a busy period of length
B slots, where B ≤ MX . Following the argument similar
to (1), the fraction of the time slots during which the channel
is busy serving packets, denoted by ρ, is given by:

ρ =
B

1/(Ge−G) + B
. (8)

Also, in a stable network, ρ is equal to the aggregate traffic
load λ̂X , which implies the mean busy period satisfies

B =
λ̂X

1 − λ̂X
· 1
Ge−G

. (9)
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Fig. 2. Renewal process of the number of arrivals U1 during vacation
period Y1.

As Section II states, Ge−G is the probability that there is
a successful attempt in a free slot. Intuitively, if Ge−G is
large, the nodes in the network will have more chances to
send packets, and thus the number of packets backlogged in
their buffers will be small, which will shorten the mean busy
period. This point is clearly demonstrated by Eq. (9), in which
B is inversely proportional to Ge−G.

B. Distribution of the Number of Arrivals During the
Vacation Period

When the busy period finishes, the node starts a vacation
period. The buffer at this epoch may be empty or not.
If the buffer is not empty, the node competes for the channel
immediately. In this paper, we refer to the vacation period as
a type-1 vacation, if the buffer is not empty at the beginning
of this vacation; otherwise, it is a type-0 vacation.

Let Y1 be the type-1 vacation and U1 be the number of
arrivals during Y1 in this case. As shown in Fig. 2, there are
three events that may occur in the first slot of the vacation
period. Define the generating function of U1 as U1(z) �
E[zU1 ], which can be derived as follows.
E1: If node 1 sends a request with probability r while the

other n−1 nodes do not make an attempt with probability
e−G, it will succeed and begin another busy period in
the next slot. Thus, this event happens with probability
ps = re−G. In this case, the vacation period is one slot.
Let I be the number of arrivals in a slot. According to
assumption A4, I is a Bernoulli random variable with
mean λ, the generating function of which is I(z) = 1 −
λ+λz. Thus, if event 1 happens, the generating function
of the number of arrivals during the vacation period is
E[zU1 |event 1] = I(z).

E2: If node 1 does not make an attempt with probability 1−r
while only one of the other n − 1 nodes sends a request
with probability Ge−G, the node that sends the request
will succeed and start a busy period at the beginning of
the next slot. Thus, this event happens with probability
pw = (1 − r)Ge−G. In this case, node 1 will restart the
channel competition after the busy period. The number
of arrivals for node 1 during this slot and the following
busy period is I + L, the generating function of which is
I(z)L(z). Since the competition process is memoryless,
the generating function of the number of arrivals at node 1
during the remaining part of vacation period is U1(z).
Thus, we have E[zU1 |event 2] = I(z)L(z)U1(z).

E3: If no nodes or multiple nodes send requests, which occurs
with probability pc = 1 − ps − pw, no one will succeed
in this slot and node 1 will compete for the channel

Fig. 3. Renewal process of the number of arrivals U0 during vacation
period Y0.

in the next slot. The generating function of the number
of arrivals during the first slot is I(z) and that during
the remaining vacation period is U1(z). We thus have
E[zU1 |event 3] = I(z)U1(z).

The above analysis clearly indicates that the channel access
procedure is a renewal process [40]. Conditioning on the event
that occurs in the first slot, the probability generating function
of U1 satisfies the following equation:

U1(z)=E[zU1 ]=psI(z) + pwI(z)L(z)U1(z) + pcI(z)U1(z),

which yields,

U1(z) =
psI(z)

1 − pwI(z)L(z)− pcI(z)

=
ps(1 − λ + λz)

1 − pw(1 − λ + λz)L(z) − pc(1 − λ + λz)
. (10)

On the other hand, if the vacation is a type-0 vacation,
the node competes for the channel after a new packet arrives.
Let Y0 be the type-0 vacation and U0 be the number of arrivals
during Y0. As shown in Fig. 3, four events may happen in the
first slot of the vacation period. In a way similar to that of
U1(z), U0(z) � E[zU0 ] can be derived as follows:

U0(z)=
λ(1−Ge−G)z+Ge−G[I(z)L(z)−(1− λ)l0]
1 − (1 − λ)(1 − Ge−G) − Ge−G(1 − λ)l0

U1(z),

(11)

where

l0 � Pr{L = 0} = L(0) = K[(1 − λ)X ]

is the probability that no packets arrive in a busy period.
The attempt process of a node is actually a series of

Bernoulli trials, which terminate when the node makes a
successful trial. Thus, the number of attempts needed by a
node for success is geometrically distributed. If the buffer of
the node is non-empty, it will make an attempt immediately
when the vacation starts. As shown in Fig. 2, if the attempt
is not successful, two events may occur: 1) no nodes succeed,
and the duration time of this event is one slot and the number
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of arrivals in a slot is a Bernoulli variable with mean λ; 2) one
of other nodes succeeds, and the duration time of this event
is 1 + B slots and the number of arrivals during that period
is I + L, which approaches a Bernoulli variable with mean
λ(1+B) if the number of nodes n is sufficiently large. In other
words, the number of arrivals U1 during the vacation period
Y1 is the sum of two kinds of Bernoulli random variables if n
is sufficiently large, and the number of the Bernoulli random
variables is a geometric random variable. Similarly, the same
thing is true for the number of arrivals U0 during the vacation
period Y0. This hints that, when n is sufficiently large, U1 and
U0 may approach a geometric distribution.

Let U be the number of arrivals during the vacation period
and U(z) be the probability generating function of U . We have
the following result.

Lemma 1: When the number of nodes n is sufficiently large,
U(z) can be expressed as

U(z)=

⎧⎪⎨
⎪⎩

U1(z), if the buffer is not empty at the
start of a vacation

U0(z), otherwise

where

U1(z) =
β

1 − (1 − β)z
(1 − λ + λz) + o

(
1
n

)
, (12)

U0(z) = zU1(z) + o

(
1
n

)

=
βz

1 − (1 − β)z
(1 + λ + λz) + o

(
1
n

)
, (13)

and

β =
ps

ps + λpc + λ(1 + B)pw

. (14)

Proof: It is clear that U = U1 if the buffer is not empty at
the start of the vacation period; otherwise, U = U0. When n
becomes large, the distribution of the number of arrivals during
a busy period L(z) approaches a Bernoulli distribution, as (7)
shows. Substituting (7) into (10), we obtain

U1(z)

=
ps(1 − λ + λz)

1−pc(1−λ+λz)−pw(1−λ+λz)(1−λB+λBz)
+o

(
1
n

)

=
ps

ps+λpc+λ(1+B)pw

1 −
(
1 − ps

ps+λpc+λ(1+B)pw

)
z
(1 − λ + λz) + o

(
1
n

)
.

Similarly, substituting (7) and

l0 = K[(1 − λ)X ] = 1 − λK �(1)X + o

(
1
n

)

= 1 − λB + o

(
1
n

)

into (11) produces U0(z) in (13).
Recall that the node competes for the channel immediately

when type-1 vacation Y1 starts, meaning that Y1 is completely
governed by the channel competition process. Thus, the prob-
ability generating functions of Y1 and U1 have the following
relationship:

U1(z) = Y1(1 − λ + λz) (15)

It follows from Lemma 1 that

Y1(z)=U1

(
z − 1 + λ

λ

)
=

λβ
1−β+λβ z

1 −
(
1 − λβ

1−β+λβ

)
z

+ o

(
1
n

)
,

(16)

which implies that Y1 is a geometric random variable.
From (16), we immediately obtain

Y1 = Y �
1(1) =

1
ps

(1 + Bpw) =
1

re−G
· 1 − λ̂Xr

1 − λ̂X
, (17)

where 1
ps

= 1
re−G is the average number of attempts made

by a node before it succeeds, and 1 + Bpw = 1−λ̂Xr

1−λ̂X
is the

average time that a node has to wait before it can reattempt
after a failed attempt. Clearly, 1/ps is proportional to attempt
rate G, while 1+Bpw does not change with G. This indicates
the mean vacation period Y1 reduces with the decrease of G.

In type-0 vacation Y0, the node competes the channel only
after a new packet arrives, which means Y0 also depends
on the packet arrival process. It follows that U0(z) �= Y0

(1−λ+λz) [33]. Though the generating function of Y0 cannot
be derived from Lemma 1, we can obtain Y0 as follows:

Y0 =
U �

0(1)
λ

=
1
λ

+ Y1 =
1
λ

+
1

re−G
· 1 − λ̂Xr

1 − λ̂X
. (18)

The derivation of this section clearly shows that attempt rate
G is the key parameter to determine B, U1, U0, Y1, and Y0.
Thus, we analyze G in the next section.

IV. ATTEMPT RATE

In a free slot, each backlogged node sends a request to the
AP with probability r. Thus, the attempt rate is given by

G = npner, (19)

where pne is the probability that the buffer of a node is
non-empty.

The buffer of a node may be emptied at the end of a busy
period of this node. In this case, the node becomes backlogged
when a new packet arrives. The average inter-arrival time of
the packets is 1/λ slots. Let p0 be the probability that the
buffer of a node is empty at the end of a busy period. Since
the average time that the buffer of a node remains empty in a
cycle is p0/λ, the probability that the buffer of a node remains
empty is given by

1 − pne =
p0/λ

C
. (20)

In a stable network, the mean number of arrivals during a
cycle is equal to the mean number of packets served in a busy
period, which means

λC = K =
B

X
. (21)

Combining (19)-(21), we obtain

G = nr

(
1 − p0

K

)
= nr

(
1 − p0X

B

)
. (22)

Thus, we need to solve p0 to complete the derivation of attempt
rate G.
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Fig. 4. Packet transmission process of node 1 where M = 2.

Let Qt and Pt be the queue lengths at the start and the
end of the t-th busy period of a node, respectively. Define
qj � limt→∞ Pr{Qt = j} and pj � limt→∞ Pr{Pt = j},
and let Q(z) and P (z) be the probability generating functions
of qj and pj , where j = 0, 1, · · · .

On one hand, pj depends on qj . As shown in Fig. 4, if Qt

is less than M , all the Qt packets will be transmitted in the
busy period of cycle t; otherwise, only the first M packets
will be sent. Thus, the number of packets served in the t-th
busy period, denoted by Kt, is determined by

Kt = Qt − (Qt − M)+, (23)

where x+ � max{x, 0}. Let Lt denote the number of packets
that arrive during Bt. The queue length at the end of the t-th
busy period Pt is given by

Pt = Qt − Kt + Lt = (Qt − M)+ + Lt. (24)

In the steady state, we have

P = lim
t→∞Pt = (Q − M)+ + L. (25)

Therefore, the probability generating function of P is

P (z) � E[zP ]

= E[z(Q−M)++L]

=
∞∑

j=1

E[z(Q−M)++L|Q = j, K = j − (j − M)+]qj

=
M−1∑
j=1

E[zL|K = j]qj +
∞∑

j=M

zj−ME[zL|K = M ]qj

=
M−1∑
j=1

E[zL|B=jX ]qj+
∞∑

j=M

zj−ME[zL|B=MX ]qj

=
M−1∑
j=1

(1−λ+λz)jXqj +
∞∑

j=M

zj−M (1−λ + λz)MXqj .

(26)

Hence, the probability that the buffer of a node is empty at
the end of a busy period is

p0 = P (0) =
M∑

j=1

(1 − λ)jXqj . (27)

On the other hand, qj is also determined by pj . As depicted
in Fig. 4, the queue length at the start of the (t + 1)-th busy
period Qt+1 is composed of the packets waiting in the buffer
at the end of the t-th busy period Pt and the packets that arrive
during the t-th vacation period, denoted by Ut, i.e.,

Qt+1 = Pt + Ut. (28)

Fig. 5. Distribution qj under different Ms, where n = 20, λ̂ = 0.2
packets/slot, X = 2 slots, and r = 0.05.

In the steady state, there is

Q = lim
t→∞Qt+1 = P + U. (29)

Accordingly, its probability generating function is given by

Q(z) � E[zQ]
= E[zP+U ]

= E[zP+U0 |P = 0]p0 +
∞∑

j=1

E[zP+U1 |P = j]pj

= p0E[zU0 ] +
∞∑

j=1

E[zU1 ]E[zP |P = j]pj

= p0U0(z) + [P (z) − p0]U1(z). (30)

Equations (26) and (30) show that P (z) and Q(z) couple with
each other and thus can only be solved numerically in general.

However, we demonstrate that Q(z) approaches a geometric
distribution in the case where the number of nodes n is
sufficiently large. Since the vacation period of a node is
typically much longer than the busy period, and thus the
number of arrivals during the vacation period U constitutes
the main body of Q. Lemma 1 shows that U is a geometric
random variable when n is large. This hints that Q(z) may
also approach a geometric distribution.

Lemma 2: When n is sufficiently large, Q(z) can be
expressed as

Q(z) =
αz

1 − (1 − α)z
+ o

(
1
n

)
, (31)

where α is given by

α = 1 − G

nr
. (32)

Proof: See APPENDIX A.
Fig. 5 verifies the analytical result in (31) via simulation

when the number of nodes is n = 20 and the aggregate packet
arrival rate is λ̂ = 0.2 packets/slot, the service time of a packet
is X = 2 slots, and the transmission probability is r = 0.05.
Fig. 5 clearly shows that n = 20 is already large enough to
ensure the accuracy of the result in (31).

According to Lemma 2, we can easily obtain qj when n is
sufficiently large as follows:

qj =
1
j!

djQ(z)
dzj

∣∣∣
z=0

= α(1 − α)j−1, j = 1, 2, · · · (33)
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Fig. 6. p0, G, Pr{Q > M} and Y1 vary with M , where n = 50, λ̂ = 0.2, 0.4 packets/slot, X = 2 slots, and r = 0.02.

Substituting (33) into (27), we can obtain the probability that
the buffer of a node is empty at the end of a busy period as
follows

p0 =
M∑

j=1

(1 − λ)jXα(1 − α)j−1

=
(1 − λ)Xα[1 − (1 − λ)XM (1 − α)M ]

1 − (1 − λ)X(1 − α)
. (34)

When n is sufficiently large, (1 − λ)X = (1 − λ̂/n)X =
1 − λ̂X/n + o

(
1
n

)
, which approaches 1 since λ̂X

n < 1
n � 1.

In this case, we have

p0 ≈ 1 − (1 − α)M = 1 −
(

G

nr

)M

. (35)

With B in (9) and p0 in (35), the attempt rate G can be derived
as follows.

Theorem 1: Attempt rate G of the CS-Aloha with a suffi-
ciently large n is the solution of the following equation:

1 − ( G
nr

)M
1 − G

nr

=
λ̂

1 − λ̂X
· 1
Ge−G

. (36)

Proof: Substituting (9) and (35) into (22), we can get
Eq. (36) after some reconfigurations.

Equation (36) shows that batch size M has a significant
impact on attempt rate G. Intuitively, if M is large, the buffer
of a node will be emptied in one busy period with high
probability. This intuition is confirmed by Fig. 6, where G
is numerically solved from (36) using the method presented
in APPENDIX B. Fig. 6(a) clearly exhibits that the probability
p0 that a node has an empty buffer at the end of a busy period
increases from 0.4 to 1 when M increases from 1 to 5 and
λ̂ = 0.2 packets/slot. As a result, the number of backlogged
nodes declines, and thus attempt rate G decreases, as depicted
in Fig. 6(b).

Accordingly, increasing M can suppress the queue length
Q at the start of the busy period. From (33), we can write
down the probability that Q exceeds M as follows:

Pr{Q > M} =
∞∑

j=M+1

α(1 − α)j−1 = (1 − α)M . (37)

Eq. (32) indicates that α increases with M . It follows that
Pr{Q > M} decreases with M . This point is visualized
by Fig. 6(c), where Pr{Q > M} rapidly falls from 0.62 to
0 when M increases from 1 to 5 and λ̂ = 0.2 packets/slot.
In other words, when M > 5, almost all of the packets waiting

in the buffer at the beginning of a busy period can be cleaned
up in this busy period with probability 1.

As a result, increasing M can shorten the attempt process
of the node. As Section III mentions, on average, a node with
a non-empty buffer needs Y1 slots to succeed in the channel
competition. Also, Y1 reduces with the decrease of G. Thus,
increasing M can lower Y1, as illustrated in Fig. 6(d).

V. MEAN DELAY AND BOUNDED DELAY REGION

Our results in Section IV show that increasing M can
accelerate the clean-up of the buffer, decrease the attempt rate,
and thus reduce the average time needed by a node to recapture
the channel. This hints that the CS-Aloha with larger M may
achieve a better delay performance. In this section, we first
derive the mean delay, denoted by D, and the bounded delay
region, and then study the effect of M on them.

Consider a packet, denoted by A, arrives at a node, say node
1 in Fig. 7, when there are N packets waiting in the buffer.
Packet A may wait a residual time for the completion of a
service or a vacation depending on if it arrives during a busy
period or a vacation period. Also, packet A has to wait for the
service completion of the N packets that stay ahead of it in the
queue. Furthermore, because of the limitation of batch size,
it may take node 1 several busy periods to send out all of the
N packets. In this case, packet A has to experience multiple
vacation periods in addition. In summary, the waiting time of
packet A in queue consists of the following three components:
(a) The residual time, denoted by R, experienced by packet A;
(b) The total service time of N packets that are waiting in the

queue upon the arrival of packet A;
(c) The total complete vacation periods experienced by packet

A before transmission, which is denoted by H .
Thus, the mean waiting time of packets, denoted by W , can
be expressed as

W = R + NX + H, (38)

where N = λW according to Little’s law. In the following,
we derive R and H to complete the derivation.

Since a node is busy with probability λX and is in vacation
with probability 1 − λX , the mean residual time is given by

R = λXRs + (1 − λX)Rv, (39)

where Rs is the mean residual service time and Rv is the
mean residual vacation time. According to the graphic method
described in [41], the mean residual service time Rs is given
by

Rs =
X

2
. (40)
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Fig. 7. Delay of packet A where M = 2.

There are two types of vacation periods, type-1 vacation (Y1)
and type-0 vacation (Y0). Recall that Y1 is a geometric random
variable. If a packet arrives during Y1, the residual vacation
period of the packet is thus geometrically distributed. If a
packet arrives during Y0, the node will be eligible to compete
the channel in the next available slot. Clearly, the channel
competition process during the residual vacation period of the
packet would be the same as that of Y1. It follows that the
residual vacation period of the packet has the same distribution
as Y1. Thus, the mean residual vacation period of a packet is

Rv = Y1. (41)

Combining (39)-(41), we obtain the mean residual time under
the condition that n is sufficiently large as follows:

R =
λX2

2
+ (1 − λX)Y1, (42)

which clearly shows that R is proportional to Y1. Since Y1

decreases with M , increasing M can reduce R.
After the packet experiences the residual time, it may wait

several complete vacation periods. Let NI and NO be the
number of packets waiting inside and outside the gate upon
the arrival of a new packet, respectively. As shown in Fig. 7(a),
if the new packet arrives in a busy period, it will experience
1 +
⌊

NO

M

⌋
complete vacation periods before it can be served;

otherwise, it will undergo
⌊

NO

M

⌋
complete vacation periods.

Using the technique described in [42], APPENDIX D obtains
the average number of complete vacation periods that a packet
experiences as follows:

F = λX +
λW

M
− (1 + λX)K ��(1)

2MK �(1)
, (43)

where K �(1) is the mean number of packets served in a busy
period and K ��(1) = K2−K. K �(1) and K ��(1) can be derived
via the relationship between K and Q in (23) as follows:

K �(1) =
M−1∑
j=1

jqj +
∞∑

j=M

Mqj =
1 − ( G

nr

)M
1 − G

nr

, (44)

and

K ��(1) =
M−1∑
j=1

j(j − 1)qj +
∞∑

j=M

M(M − 1)qj

=
2G
nr

[
1 − M

(
1 − G

nr

) (
G
nr

)M−1 − ( G
nr

)M]
(
1 − G

nr

)2 . (45)

Note that each vacation completely experienced by a packet
must start with a non-empty buffer. It follows that the average
duration of complete vacation periods experienced by a packet
is given by

H = FY1 =
[
λX +

λW

M
− (1 + λX)K ��(1)

2MK �(1)

]
Y1. (46)

Intuitively, if M is large, more packets can be sent in a busy
period and the number of complete vacations F experienced
by a packet before transmission decreases. Also, the mean
vacation period Y1 reduces with the growth of M . Thus,
the average duration of complete vacations experienced by a
packet H can be reduced by increasing M .

From (38), (42) and (46), it is clear that increasing M can
reduce the mean delay, the expression of which is formally
stated as follows.

Theorem 2: The mean delay of the CS-Aloha network with
sufficiently large node population n is given by

D = W + X =
λX2

2 + Y1

[
1 − (1+λX)K′′(1)

2MK′(1)

]
1 − λX − λY1

M

+ X, (47)

where Y1, K �(1) and K ��(1) are respectively given by (17),
(44) and (45). �

Using (47), we plot the mean delay as a function of M
in Fig. 8. As we can see, the mean delay is 410 slots when
M = 1, and rapidly drops to 117 slots when M slightly
increases from 1 to 5. Also, as displayed in Fig. 6(a), the buffer
of a node can almost be emptied in a single busy period when
M = 5 and λ̂ = 0.2 packets/slot. Thus, further increasing M
does not reduce the mean delay any more. Fig. 8 indicates
that a small M is enough for the reduction of the mean delay.
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Fig. 8. Mean delay varies with M , where n = 50, λ̂ = 0.2 packets/slot,
X = 2 slots and r = 0.02.

As a comparison, the S-Aloha cannot achieve a bounded delay
since the aggregate packet arrival rate λ̂ = 0.2 is larger than
e−1/X = 0.184, that is the capacity that the S-Aloha can
provide. This clearly indicates the CS-Aloha with small M is
superior to the S-Aloha in terms of delay performance.

Stability is a key issue in the design of Aloha-like proto-
cols. A network is unstable when its mean delay is unbounded.
It is known that the stability of Aloha-like protocols is sus-
ceptible to the aggregate packet arrival rate λ̂, the number
of nodes in the system, and the transmission probability r
[32], [39]. The result in Fig. 8 shows that the CS-Aloha
with a large M can reduce the mean delay, which implies
that increasing M can potentially make the network more
stable. To demonstrate this point, we first investigate the stable
condition of the CS-Aloha and the related design issues in
Section V-A, and then discuss the effect of M on system
performance in Section V-B.

A. Stable Condition and Network Design

From Theorem 2, we find that if 1 − λX − λY1/M >
0, the mean delay D is bounded. Recall that bounded delay
requires that the network satisfies condition (5). Combining
these two results, we have the following statement.

Proposition 1: To achieve the bounded delay, the random
access network with the CS-Aloha should satisfy the following
conditions ⎧⎪⎪⎨

⎪⎪⎩
1 − λX − λ

Mre−G
· 1 − nλXr

1 − nλX
> 0 (48)

nλ <
M

1/(nre−nr) + MX
(49)

�
Proposition 1 clearly indicates that the condition that the

aggregate packet arrival rate is less than the capacity is
not sufficient to ensure the bounded delay. This conclusion
is consistent with that obtained in [39], which studied the
delay performance of another kind of Aloha-like protocol,
non-persistent CSMA.

The stable condition can be employed to design the network.
One design issue in practice is to estimate the node population
that can be supported by a network according to the packet
arrival rate of each node λ, which is known by the operator
before the network planning. Let n̂ be the number of nodes
that the network can support when transmission probability r
is given. We have

n ≤ 	nr
, (50)

according to (48), where nr ∈ R is the real-number root of
variable n of the following simultaneous equations of n and G:⎧⎪⎪⎨

⎪⎪⎩
1 − λX − λ

Mre−G
· 1 − nλXr

1 − nλX
= 0

1 − ( G
nr

)M
1 − G

nr

=
nλ

1 − nλX
· 1
Ge−G

and

n ≤
⌊

1
λX

− 1
r

W0

(
e

r
λX

MX

)⌋
, (51)

according to (49), where W0(x) > −1 is a principal branch
of Lambert W function W(x)eW(x) = x [43]. Combining (50)
and (51), the number of nodes that can be supported by the
network is given by

n̂ = min
{
	nr
 ,

⌊
1

λX
− 1

r
W0

(
e

r
λX

MX

)⌋}
. (52)

When the number of nodes n is determined, another issue
of network design is to find a bounded delay region in terms of
transmission probability r, such that the network can be stable.
Again, this can be achieved by using Proposition 1. On one
hand, condition (48) implies that the transmission probability
should satisfy r > r0, where r0 is the root of variable r of
the following equation:

1 − λX − λY1

M
= 1 − λX − λ

Mre−G
· 1 − nλXr

1 − nλX
= 0. (53)

On the other hand, condition (49) yields

−W0(−S/M)
n

< r <
−W−1(−S/M)

n
, (54)

where S = λ̂
1−λ̂X

, and W−1(x) < −1 is another principal
branch of the Lambert W function. It is easy to prove r0 >
−W0(−S/M)

n . Thus, once the number of nodes n is given,
the bounded delay region is given by

r ∈
(

r0,
−W−1(−S/M)

n

)
. (55)

In the next part, we discuss how batch size M influences the
node population that the network can support and the bounded
delay region when the node population is given.

B. Effect of Batch Size M on System Performance

To facilitate our discussion, we fix the packet arrival rate
per node λ = 0.004 packets/slot and the service time of a
packet X = 2 slots.

1) 1 ≤ M < ∞: Fig. 9(a) plots the node population that
the CS-Aloha with M = 1 can support n̂ versus with the
transmission probability r. When r is very small, the nodes
send so few requests that the channel will be underutilized.
In this case, the network can only provide a small capacity
and thus accommodate a small number of nodes. With the
increase of r, channel utilization is improved and the network
can support more nodes. When r increases such that the total
capacity the network can offer is maximized, n̂ reaches its
maximum value, denoted by n̂max. However, if r becomes
excessively large, a lot of nodes make attempts in the same
slot, and collisions occur frequently. In this case, the network
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Fig. 9. The number of nodes supported by the CS-Aloha vs. transmission probability, where λ = 0.004 packets/slot and X = 2 slots.

capacity degrades, and n̂ declines accordingly. For example,
n̂ in Fig. 9(a) first increases and reaches the maximum value
n̂max = 52 at r = 0.02, and then decreases after that.

Given the number of deployed nodes n ≤ n̂max, we can
derive the mean delay using (47). When M = 1, the first and
the second moments of the number of packets served in a
busy period are K �(1) = 1 and K ��(1) = 0, according to (44)
and (45). As APPENDIX B shows, attempt rate GM=1 =
−W0(−S) is a constant as long as the network is stable. Thus,
it follows from (47) that the mean delay is given by

DM=1 =
−W0(−S) − λ̂X

[−W0(−S) − λX
2

]
r

λ̂[1 − λX − λXW0(−S)]r+λW0(−S)
+ X. (56)

Fig. 10(a) plots DM=1 varying with transmission probabil-
ity r, where n = 30 < n̂max and n = 50 < n̂max. When
r → 0, the node sends few requests, thus a large number
of packets accumulate in the buffer. In this case, the mean
delay is quite large or unbounded. With the increase of r,
the mean delay decreases. However, if r is excessively large,
the collision probability of requests becomes prominent and
the network will become unstable again. According to (55),
when M = 1, the bounded delay region is:

r ∈
( −W0(−S)

n[1 − λX − λXW0(−S)]
,
−W−1(−S)

n

)
. (57)

Equation (56) indicates that DM=1 monotonically decreases
with r in the bounded delay region. Therefore, DM=1 will
approach its minimum value when r→r∗M=1, where

r∗M=1 =
−W−1(−S)

n
. (58)

As shown in Fig. 10(a), in the network with n = 30, the mean
delay tends to the minimum value 20 slots if r → 0.094.

Also, as (57) shows, with the growth of node population n,
the size of the bounded delay region shrinks and eventually
vanishes. As demonstrated in Fig. 10(a), where the size of
the bounded delay region reduces from 0.088 to 0.018 when
n increases from 30 to 50. Specifically, the bounded delay
region disappears and the network is inherently unstable when
n > 52, which is the maximum node population that the
CS-Aloha with M = 1 can support. This property is similar
to that of the S-Aloha [32].

n̂ as a function of r is further studied in Fig. 9(b) when
M = 3. Comparing Fig. 9(a) and (b), it can be found that
n̂ at each r is improved when M increases from 1 to 3.
In particular, n̂max increases from 52 to 86.

We then observe the mean delay versus r in Fig. 10(b),
where n = 30 and n = 50. Similarly, we find that the
bounded delay region becomes wider with the increase of M .
For example, when n = 50 and M increases from 1 to 3,
the bounded delay region is expanded from (0.012, 0.03) to
(0.0025, 0.068). This confirms that increasing M can enlarge
the node population capacity and the bounded delay region
of r.

Similar to the case of M = 1, the bounded delay region of
the CS-Aloha with M = 3 shrinks with the growth of n,
as depicted in Fig. 10(b). When n > n̂max, the network
will never be stable no matter how r is tuned. Also, when
the network is stable, DM=3 monotonically decreases with r.
According to (55), the CS-Aloha with M < ∞ can tend to
the minimum mean delay when r→r∗M<∞, where

r∗M<∞ =
−W−1(−S/M)

n
. (59)

2) M = ∞: Recall that a node with a non-empty buffer can
succeed in a free slot with probability re−G, which is clearly
larger than 0 for any r in the region (0, 1). Once the node
takes over the channel, the unlimited batch size (i.e., M = ∞)
allows the node to send out all the packets waiting in the buffer
in the time slot when it succeeds. In other words, the queue
length of each node will never increase to infinity, as long
as the aggregate packet arrival rate nλ is less than 1/X ,
which is the capacity that can be offered by the CS-Aloha
when M = ∞. This point can be verified by the following
derivations.

Substituting (17) into (47) and letting M → ∞, we obtain
the mean delay when M = ∞ as follows:

DM=∞ =
λX2

2 + 1
re−G · 1−λ̂Xr

1−λ̂X

1 − λX
+ X, (60)

where attempt rate G is determined by the following equation
according to (36):

1
1 − G

nr

=
λ̂

1 − λ̂X
· 1
Ge−G

. (61)

Equation (60) clearly shows that the mean delay is bounded
as long as nλ < 1/X and 0 < r < 1. This means that the
number of nodes that can be supported by the CS-Aloha with
M = ∞ is a constant n̂ = 	1/(λX)
, and the network with
n ≤ 	1/(λX)
 will be stable at any r ∈ (0, 1), which is
confirmed by Fig. 9(c) and Fig. 10.
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Fig. 10. Mean delay and bounded delay region of the CS-Aloha, where λ = 0.004 packets/slot and X = 2 slots.

Though DM=∞ is finite for all the rs in the region (0, 1)
as long as n ≤ 	1/(λX)
, it could be very large when r is
not properly set. For example, when n = 50 and r > 0.1,
DM=∞ > 103 slots. This indicates that r should be carefully
selected even when M = ∞. Substituting (61) into (60) to get
rid of r, we have

DM=∞=
λX2

2(1 − λX)
− 1

λ(1 − λX)
+

n(1 − λXG)eG

(1 − λX)(1 − λ̂X)G
+ X. (62)

We show in APPENDIX C that DM=∞ first decreases and
then increases with the increase of G. We also demonstrate
in APPENDIX B that G monotonically increases with r.
This implies that DM=∞ has a minimum value when r
changes from 0 to 1. For example, the mean delay when
n = 50 in Fig. 10 reaches the minimum value at r =
0.1. APPENDIX C further gives the optimum transmission
probability r∗M=∞ in (C-5) and (C-7), and the minimum mean
delay in (C-4) and (C-6).

VI. DELAY DISTRIBUTION AND DELAY JITTER

In wireless access networks, voice and video communica-
tions are popular applications, which are sensitive to delay
jitter. Thus, it is necessary to evaluate the delay jitter of the
CS-Aloha. The delay jitter, denoted by σD , is the standard
deviation of the delay, which can be derived from the delay
distribution. In this section, we first use the technique pre-
sented in [44] to solve the delay distribution and then calculate
the delay jitter.

Consider the i-th packet that leaves the queue in a busy
period of a node, where i = 1, 2, · · · , K and K = min{Q, M}
is the number of packets served in a busy period. Let Πi be
the queue length left behind by the i-th packet and Φi be the
number of arrivals during the service time of the i-th packet.
We thus have

Πi = Q + Φ1 + Φ2 + · · · + Φi − i, (63)

where Q is the queue length at the start of a busy period.
Since a packet arrives at the node in a slot with probability
λ and the service time of a packet is X slots, the probability
generating function of Φi is given by

Φi(z) = (1 − λ + λz)X . (64)

Let Π be the queue length of a node seen by a departure
packet of this node and Π(z) � E[zΠ] be the probability
generating function of Π. It follows from (63) and (64) that

Π(z) can be shown in the following equation (65) at the
bottom of the next page.

Note that Π is also the number of arrivals during the sojourn
time D that the packet spends in the node. According to
the description in Section V, the delay of a packet mainly
consists of a residual time, several complete vacation periods,
and several busy periods. Because a vacation period is much
longer than a busy period, the number of arrivals during the
vacation periods is the major components of Π. Recall that the
number of arrivals during a vacation period U is a geometric
random variable when node population n is sufficiently large.
Following the argument similar to that of Q, it is reasonable to
imagine that Π could also be geometrically distributed when
n is large. We show that this is true as follows:

As Section IV mentions, λX = λ̂X
n < 1

n → 0 when n is
sufficiently large, and thus we have (1−λ+λz)X = 1−λX+
λXz + o

(
1
n

)→ 1. Replacing (1 − λ + λz)X with 1 in (65),
we obtain

Π(z) =
α

1 − (1 − α)z
, (66)

where α = 1 − G
nr as (32) shows. Equation (66) clearly

indicates that Π approaches to a geometric random variable
for a large n.

Let D(z) � E[zD] be the probability generating function
of D. With the distribution of Π, the delay distribution can be
derived.

Theorem 3: The generating function of the delay distribu-
tion of the CS-Aloha is given by

D(z) =
γ

1 − (1 − γ)z
, (67)

where γ is given as follows:

γ =
λα

1 − α + λα
=

λ(nr − G)
G + λ(nr − G)

. (68)

Proof: According to assumption A4 and following the
relation between Π and D, we have

Π(z) = E[(1 − λ + λz)D] = D(1 − λ + λz),

that is

D(z) = Π
(

z − 1 + λ

λ

)
. (69)

Substituting (66) into (69), we obtain (67).
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Fig. 11. Delay distribution and Pr{D ≥ �C�}, where n = 50, λ̂ = 0.2
packets/slot, X = 2 slots, and r = 0.02.

Theorem 3 clearly indicates that the delay distribution is
a geometric distribution when n is large. According to (67),
we have

Pr{D = j} = γ(1 − γ)j . (70)

The accuracy of (70) is confirmed by the simulation result
in Fig. 11(a), which shows that D approaches a geometric
distribution when n = 50. Furthermore, we can solve the mean
delay from (67) as follows:

D = D�(1) =
1 − γ

γ
=

G

λ(nr − G)
. (71)

It is easy to verify that (71) is numerically equal to (47), which
confirms the validity of our results.

As Section III shows, the CS-Aloha with M > 1 can
suppress the queue length, which implies that it can suppress

the tail distribution of packet delay. Herein, we check the
probability that the packet delay is larger than the mean cycle
time, Pr{D ≥ �C
}. A small Pr{D ≥ �C
} means that a
packet can be transmitted in one cycle with high probability.
According to (70), we have

Pr{D ≥ �C
} =
∞∑

j=�C

γ(1 − γ)j = (1 − γ)�C
, (72)

which decreases with γ. Remember that M > 1 can reduce
attempt rate G and thus increase γ. Hence, the result in (72)
implies that, the CS-Aloha with M > 1 can lower Pr{D ≥
�C
}. As an example, Fig. 11(b) shows that Pr{D ≥ �C
}
declines very fast with the growth of M .

As a result, the fluctuation range of packet delay will shrink,
and thus the delay jitter will decrease. According to (67),
we calculate the delay jitter as follows:

σD =
√

D��(1) + D�(1) − [D�(1)]2

=

√[
G

λ(nr − G)

]2
+

G

λ(nr − G)
. (73)

Since G decreases with M , Eq. (73) indicates that the
CS-Aloha with M > 1 can reduce σD . Fig. 12(a) plots the
delay jitter versus M . Similar to the mean delay in Fig. 8,
the delay jitter drops very fast with the growth of M and
converges to 117 slots when M = 5. To be more intuitive,
Fig. 12(b) further plots the queue length of a node varying
with the time when M = 1 and 3. As we can see, the queue
length fluctuates between 0 and 12 when M = 1, while it only
varies between 0 and 3 when M = 3.

VII. APPLICATIONS

An application of our model is underwater acoustic net-
works [14]–[18]. The underwater acoustic network is a wire-
less random access network with the following two features.
First, the nodes are battery powered and battery replenishment
is very difficult [14]–[17]. The node is discarded, if the battery
runs out. For the purpose of power saving, how to enhance
network throughput while reducing packet collisions is an
important issue. In this context, the CS-Aloha based protocols
emerged, e.g., T-Lohi [14], [15] and Slotted FAMA (S-FAMA)
[16]–[18]. Second, the channel is error-prone due to fouling,

Π(z) =
E
[∑K

i=1 zΠi

]
E[K]

=
E
[∑K

i=1 zQ+Φ1+Φ2+···+Φi−i
]

E[K]

=

∑∞
j=1 E

[∑K
i=1 zQ+Φ1+Φ2+···+Φi−i|Q = j, K = min{j, M}

]
qj∑∞

j=1 E [K = min{Q, M}|Q = j] qj

=

∑M
j=1

∑j
i=1 zj−i(1 − λ + λz)Xiα(1 − α)j−1 +

∑∞
j=M+1

∑M
i=1 zj−i(1 − λ + λz)Xiα(1 − α)j−1∑M

j=1 jα(1 − α)j−1 +
∑∞

j=M+1 Mα(1 − α)j−1

=
α

1−(1−α)M
· (1 − λ + λz)X [1 − (1 − α)M (1 − λ + λz)XM ]

z − (1 − λ + λz)X

{
αz

1 − (1 − α)z
− α(1 − λ + λz)X

1 − (1 − α)(1 − λ + λz)X

}
(65)
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Fig. 12. (a) Delay jitter varies with M and (b) queue length changes with
time, where n = 50, λ̂ = 0.2 packets/slot, X = 2 slots, and r = 0.02.

corrosion, and plentiful underwater noises [15], [45], [46].
According to [15], the typical bit error rate of underwater
acoustic networks is 10−5. Thus, the transmission failure of
requests and data packets should be taken into consideration
in the design of the network.

We take S-FAMA in [16], [17] as an example to demon-
strate how our model can be applied to modelling underwa-
ter acoustic networks. As plotted in Fig. 13, each node in
S-FAMA sends a request-to-send (RTS) to the AP before data
transmission. If the RTS is sent successfully, the AP will return
a clear-to-send (CTS). Thus, one time slot in S-FAMA includes
the transmission time of the RTS and the waiting time for
the CTS, as illustrated in Fig. 13. After receiving the CTS,
the node monopolizes the channel to transmit packets. Each
packet is followed by an ACK if it is transmitted without error.
In the case where the channel is error-prone, the transmission
of RTS/CTS and packet/ACK may fail. An RTS (or a packet)
is transmitted successfully only if the node receives the CTS
(or ACK) from the AP. If the node does not receive the
CTS from the AP, it reattempts to send the RTS in the
next slot with probability r. Similarly, the node keeps on
retransmitting the packet if the packet is not acknowledged.
Clearly, S-FAMA is quite similar to CS-Aloha, except that the
channel is error-prone. In this section, we extend our model
to analyze S-FAMA, assuming that the channel conditions in
the downlink direction (from AP to nodes) are the same and
the CTS/ACK can or cannot be received correctly by all the
nodes at the same time.

A. Throughput, Mean Delay, and Delay Jitter

Let b be the bit error rate (BER), and sR, sP , and sACK

be the size of a request, a packet, and an ACK, respectively.

Define θR and θP as the probability of successful request
transmission and that of successful packet transmission, given
that no collisions occur. We have

θR = (1 − b)sR+sACK , (74)

and

θP = (1 − b)sP +sACK . (75)

Let Ge be the attempt rate when the channel is error-
prone. Owing to the request collisions and the channel errors,
the probability that a node can make a successful attempt
in a free slot is θRGee

−Ge . After the node succeeds, each
packet transmission may fail with probability 1 − θP . Let
T be the service time of a packet, which is defined as the
duration from the time when a node begins to send the packet
to the time when the node receives the ACK for the packet.
Clearly, T ≥ X due to a non-ideal channel. In particular,
the distribution of service time can be written down as follows

Pr{T = jX} = θP (1 − θP )j−1, j = 1, 2, · · · ,

of which the generating function is

T (z) =
∞∑

j=1

zjXθP (1 − θP )j−1 =
θP zX

1 − (1 − θP )zX
. (76)

Thus, the first and second moments of service time are given
by

T = T �(1) =
X

θP
, (77)

and

T ��(1) =
2X2 − X(X + 1)θP

θ2
P

. (78)

Following the method in Sections II through IV, we can derive
the equation for attempt rate Ge as follows:

1 − (Ge

nr

)M
1 − Ge

nr

=
λ̂

1 − λ̂T
· 1
θRGee−Ge

. (79)

Accordingly, we can obtain the following results of the case
where the channel is error-prone:
(1) Saturated throughput

ηsat,e =
τ

1
M(1−b)sR+sACK nre−nr + X

(1−b)sP +sACK

. (80)

(2) Mean delay

De =
λT ′′(1)

2 + Y1,e

[
1 − (1+λT )K′′

e (1)
2MK′

e(1)

]
1 − λT − λY1,e

M

+ T , (81)

where

K �
e(1) =

1 − (Ge

nr

)M
1 − Ge

nr

(82)

and

K ��
e (1) =

2Ge

nr

[
1 − M

(
1 − Ge

nr

) (
Ge

nr

)M−1 − (Ge

nr

)M]
(
1 − Ge

nr

)2
(83)
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Fig. 13. Illustration of the S-FAMA.

are the first and second moments of the number of packets
served in a busy period, and

Y1,e =
1

θRre−Ge
· 1 − λ̂T r

1 − λ̂T
(84)

is the mean vacation period of a node that starts with a
non-empty buffer.

(3) Number of nodes that can be supported by the network

n̂e = min

{
	nr,e
 ,

⌊
1

λT
− 1

r
W0

(
e

r
λT

θRMT

)⌋}
, (85)

where nr,e ∈ R is the real-number root of n for the
following simultaneous equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1 − λT − λ

MθRre−Ge
· 1 − nλTr

1 − nλT
= 0

1 − (Ge

nr

)M
1 − Ge

nr

=
nλ

1 − nλT
· 1
θRGee−Ge

(86)

(4) Delay jitter

σDe =

√[
Ge

λ(nr−Ge)

]2
+

Ge

λ(nr−Ge)
+T ��(1)+T �(1)−[T �(1)]2.

(87)

It is easy to verify that when bit error rate b = 0, ηsat,e in (80),
De in (81), n̂e in (85), and σDe in (87) will change to ηsat

in (2), D in (47), n̂ in (52), and σD in (73), respectively.

B. Performance of S-FAMA

We evaluate the performance of underwater acoustic net-
works, using the parameters listed in Table I [16]. According
to these parameters, we have:
(1) The duration of a time slot of the underwater acoustic

network using S-FAMA protocol is 1.53s. In particular,
the transmission time of RTS is 0.1s, and the waiting time
for the CTS is 1.43s. This implies 1−δ = 0.1/1.53 = 0.07
and δ = 1.43/1.53 = 0.93.

(2) The packet arrival rate of each node is λ = 1/300 ·1.53 ≈
0.005 packets/slot.

(3) The service time of a packet is 4.43s, including the 3-s
transmission time of the packet and the 1.43-s waiting
time for the ACK, and thus X = 4.43/1.53 ≈ 3 slots.

Herein, we only consider the S-FAMA protocol with infinite
batch size.

TABLE I

PARAMETERS EMPLOYED IN OUR STUDY

A protocol for underwater acoustic networks is flexible and
can be adaptive to different application scenarios if it can
support more nodes at the same time. We thus first check
the number of nodes n̂e that can be supported by the proto-
col. According to Eq. (85), we can easily know that S-FAMA
can support n̂e =

⌊
θP

λX

⌋
=
⌊

(1−10−5)3100

0.005·3
⌋

= 64 nodes,
which is independent of the transmission probability r. As a
comparison, the classical S-Aloha can only support 23 nodes.

Given n ≤ n̂e, transmission probability r is a key parameter
that influences network performance. As Section V mentions,
M = ∞ can make the network stable for any r ∈ (0, 1).
If r is very small, the network is underutilized and will suffer
a high mean delay. If r is excessively large, RTS collisions
happen frequently, which will not only lead to a large delay
but also waste a lot of energy. Thus, r should be carefully
selected to meet the requirements on the mean delay and the
node lifetime.

In the example defined by Table I, suppose that the require-
ment of the mean delay is De ≤ 20 seconds. It is clear from
Eq. (81) that transmission probability r should be adjusted in
the region [0.146, 0.398], as shown in Fig. 14(a).

To evaluate the energy consumption of S-FAMA, we define
unit energy consumption as the average energy consumed per
bit. Clearly, given the battery size of a node, it can transmit
more data before the battery runs out, if the unit energy
consumption is low. The power consumption of an acoustic
modem is 2W of power when it is transmitting data, and
0.02W when it is idle or receiving the CTS/ACK [14]. Let
Δ be the duration of a time slot. Recall that a non-empty
node on average spends Y1,e slots on channel competition
before it succeeds. In particular, the node makes attempts in
1/(θRe−G) slots, and stays idle in Y1,e − 1/(θRe−G) slots
during channel competition. If a node sends a request in a slot,
it consumes 2(1 − δ)Δ + 0.02δΔ J; otherwise, it consumes
0.02Δ J. On the other hand, a node on average transmits Ke

packets during the busy period after it succeeds. The average
service time of a packet is T slots, in which the node spends
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Fig. 14. Mean delay and unit energy consumption vary with transmission
probability.

T (X−δ)
X slots on packet transmission and waits Tδ

X slots for

the ACK. Thus, a node consumes
[

2ΔT (X−δ)
X + 0.02ΔTδ

X

]
Ke

J on average during a busy period. As a result, we have the
unit energy consumption as follows:

EP

=
[2(1 − δ)Δ + 0.02δΔ] · 1

θRe−G + 0.02Δ
(
Y1,e − 1

θRe−G

)
KesP

+

[
2T (X−δ)Δ

X + 0.02TδΔ
X

]
Ke

KesP

=
Y1,e

Ke

· 0.02Δ
sP

+
1.98(1−δ)(1−λ̂T )GΔ

λ̂sP

+
(2X−1.98δ)TΔ

XsP
,

(88)

where Y1,e

Ke
is the amortized collision overhead to successfully

transmit a packet. It is obvious that the smaller the overhead
is, the lower the unit energy consumption is. In the current
example, the unit energy consumption achieves its minimal
value 2.23 mJ/bit when r = 0.374, as depicted in Fig. 14(b).
As a comparison, if S-Aloha is applied to underwater acoustic
networks [47], [48], the minimum unit energy consumption
will be 3.5 mJ/bit, which is 1.5 times as high as that of
S-FAMA with M = ∞.

VIII. CONCLUSION

In this paper, we developed a vacation queueing model with
limited-service discipline to study the delay performance and
the stable condition of the CS-Aloha with batch size M . Based
on this model, we derive the delay distribution, the mean delay,

the delay jitter and the bounded delay region. Our analysis
shows that the attempt process of each node in the CS-Aloha
is essentially a series of Bernoulli trials and thus the delay
distribution is a geometric distribution when node population is
sufficiently large. Also, our analytical results demonstrate that
increasing M can accelerate the clean-up of the buffer in each
node, and thus decrease the attempt rate in each slot, which
increases the successful probability of each node in attempt
process. As a result, the CS-Aloha with M > 1 can decrease
the mean delay and the delay jitter, and enlarge the bounded
delay region. In particular, when M is infinity, the network
can be stable for all the transmission probability rs in the
region (0, 1), as long as the aggregate packet arrival rate nλ is
smaller than 1/X . We also derived the optimum transmission
probability that is required to achieve the minimum mean delay
under different values of M .
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APPENDIX A
PROOF OF LEMMA 2

Equations (26) and (30) in Section IV clearly indicate that
the probability generation function of the queue length at the
beginning of the busy period Q(z) and that of the queue length
at the end of the busy period P (z) couple with each other.
Owing to such a coupling relationship, it is hard to solve Q(z)
in the general case. In this appendix, however, we prove that
Q is geometrically distributed when the number of nodes n is
sufficiently large.

Assume that Q obeys a geometric distribution with param-
eter α, that is

qj = α(1− α)j−1, j = 1, 2, · · · (A-1)

where α ∈ (0, 1). Thus, the generating function of Q is

Q(z) =
αz

1− (1− α)z
. (A-2)

In the following, we prove Lemma 2 by checking if (30) holds
under this assumption.

Substituting (A-1) into (26) and (27), P (z) and p0 are
respectively given by

P (z) =
α(1− λ+ λz)X

[
1− (1− α)M−1(1− λ+ λz)X(M−1)

]
1− (1− α)(1− λ+ λz)X

+
α(1− α)M−1(1− λ+ λz)MX

1− (1− α)z
,

(A-3)

and

p0 = P (0) =
α(1− λ)X [1− (1− α)M (1− λ)XM ]

1− (1− α)(1− λ)X
. (A-4)

Substituting (A-3), (A-4), (12) and (13) into the right-hand
side of (30), we obtain

p0U0(z) + [P (z)− p0]U1(z)

= [P (z)− p0 + p0z]U1(z) + o

(
1

n

)
=

{
α(1− λ+ λz)X

[
1− (1− α)M−1(1− λ+ λz)X(M−1)

]
1− (1− α)(1− λ+ λz)X

+
α(1− α)M−1(1− λ+ λz)XM

1− (1− α)z

+
α(1− λ)X

[
1− (1− α)M (1− λ)XM

]
1− (1− α)(1− λ)X

(z − 1)

}

× β

1− (1− β)z
(1− λ+ λz) + o

(
1

n

)
.

(A-5)

In the following, we show that β can be expressed as a
function of α. Recall that Q = P + U , as (29) shows. Thus,
Q satisfies,

Q = P + U = P + p0U0 + (1− p0)U1, (A-6)

where

P = P ′(1) =
(1− α)M + λX[1− (1− α)M ]

α
, (A-7)

and
U0 = 1 + U1 =

1

β
+ λ. (A-8)

According to (A-2), Q is also given by

Q = Q′(1) =
1

α
. (A-9)

Combining (A-4) and (A-6)-(A-9), the parameter β can be
expressed as a function of α as follows:

β =
1

1− λ+ (1−λX)[1−(1−α)M ]
α

− α(1−λ)X [1−(1−α)M (1−λ)XM ]

1−(1−α)(1−λ)X

.

(A-10)

As Section IV mentions, λX → 0 when n is sufficiently
large, which implies (1− λ+ λz)X → 1, (1− λ)X → 1, and
1 − λX → 1 for large n. Substituting (A-10) into (A-5) and
replacing (1− λ+ λz)X , (1− λ)X , and 1− λX with 1, we
can simplify (A-5) as follows

p0U0(z) + [P (z)− p0]U1(z)

=

{
α(1− α)M−1

1− (1− α)z
+

[
1− (1− α)M

]
z − α(1− α)M−1

}
×

α
1−(1−α)M+1

1−
(
1− α

1−(1−α)M+1

)
z

=
α

1− (1− α)z

=Q(z)
(A-11)

This indicates that Lemma 2 is established.
In the following, we determine the value of parameter α

using (22). In the CS-Aloha, only the first M packets can be
transmitted if the queue length at the start of the busy period
is larger than M ; otherwise, all packets in the buffer can be
served. Thus, according to (A-1), the mean number of packets
served in a busy period is given by

K =

M−1∑
j=1

jqj +

∞∑
j=M

Mqj =
1− (1− α)M

α
. (A-12)

On the other hand, applying the condition (1−λ)X → 1 when
n is sufficiently large, we can obtain from (A-4) the probability
that the buffer is empty at the end of the busy period as follows

p0≈1− (1− α)M . (A-13)

Substituting (A-12) and (A-13) into (22), we obtain

G = nr(1− α), (A-14)

which implies

α = 1− G

nr
.

APPENDIX B
SOLUTION OF ATTEMPT RATE G

In this appendix, we discuss how to solve the attempt rate
G from (36) in Theorem 1.
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Fig. 1. Solution of attempt rate G where n = 20, λ̂ = 0.25 packets/slot,
X = 2 slots, r = 0.06, and M = 3.

A. M = 1

When M = 1, Eq. (36) changes to

λ̂

1− λ̂X
· 1

Ge−G
= 1.

This equation has two roots, −W0(−S) and −W−1(−S),
where S = λ̂/(1 − λ̂X). As [1] shows, −W−1(−S) is
an unstable equilibrium at which the network is transiently
stable, while −W0(−S) is a stable point at which the network
is stable in the long term. In other words, though G may
temporarily stay at −W−1(−S), it will eventually converge
to −W0(−S) in the steady state.

B. 1 < M < ∞
In this case, the root of (36) is the value of G at the cross

point of curves y1 =
1−( G

nr )
M

1− G
nr

and y2 = S
Ge−G in the region

0 < G < nr since G = npner. As shown in Fig. 1, with the
increase of G, y1 monotonically increases from 1 and goes
through points (0, 1) and (nr,M), while y2 first decreases
from ∞ and then climbs up after it reaches the minimum value
at G = 1. Also, y2 (−W0(−S/M)) = y2 (−W−1(−S/M)) =
M . In a stable network, the aggregate packet arrival rate λ̂
should be less than M

1

nre−nr +MX
, which implies

−W0(−S/M) < nr < −W−1(−S/M).

Therefore, y1 and y2 have only one cross point in the region
G ∈ (0, nr), as illustrated in Fig. 1. This means (36) has only
one desirable solution of attempt rate G when 1 < M < ∞.

C. M = ∞
When M = ∞, Eq. (36) can be rewritten as follows:

SG

n(S −Ge−G)
= r, (B-1)

where S = λ̂/(1− λ̂X). The roots of (B-1) are the values of
G at the cross points of two curves y1(G), SG

n(S−Ge−G)
and

y2(G) = r. Clearly, the number of cross points depends on the
monotonicity of y1. Taking the derivative of y1 with respect
to attempt rate G, we have

y′1 =
S(S −G2e−G)

n(S −Ge−G)2
, (B-2)
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Fig. 2. G2e−G and Ge−G versus attempt rate G, where λ̂ = 0.1
packets/slot, X = 2 slots, and n = 20.

the sign of which is determined by S − G2e−G. As plotted
in Fig. 2, G2e−G is a bell-shape curve. With the growth of
G, G2e−G first rises from 0 to the maximum value 4e−2 at
G = 2, and then gradually falls to 0 again. When S < 4e−2,
i.e., 0 < λ̂ < 4/(e2 + 4X), y1 has three monotone intervals:
(a) (0, G0): y1 is monotonically increasing since y′1 > 0,
(b) [G0, G1]: y1 is monotonically decreasing since y′1≤0,
(c) (G1, n): y1 is monotonically increasing since y′1 > 0,

where G0 = −2W0

(
−
√
S/2

)
and G1 = −2W−1

(
−
√
S/2

)
are two roots of S −G2e−G = 0. When 4/(e2 + 4X) ≤ λ̂ <
1/X , y′1 > 0 and thus y1 is a monotonous increasing function
for all Gs. This indicates that the monotonicity of y1 depends
on the value of λ̂.

On the other hand, since 0 < y2 = r < 1, y1 and y2 have
cross points only when y1 > 0 (i.e., S should be larger than
Ge−G). Consider the fact that the maximum value of Ge−G is
e−1. As displayed in Fig. 2, if S > e−1, i.e., λ̂ > 1/(e+X),
S > Ge−G holds if G ∈ (0, n); otherwise, S > Ge−G only
holds if G ∈ (0,−W0(−S)∪(−W−1(−S), n). Thus, whether
(B-1) has solutions also depends on the value of λ̂.

Thus, we should discuss the solutions of (B-1) in the three
regions of λ̂: (0, 1/(e+X)], (1/(e+X), 4/(e2 + 4X)], and
(4/(e2 + 4X), 1/X).

1) 0 < λ̂ ≤ 1/(e + X): In this case, y1 and y2 have
cross points only when attempt rate G is in (0,−W0(−S) ∪
(−W−1(−S), n), and y1 has three monotone intervals:
(0, G0), [G0, G1], and (G1, n).

As plotted in Fig. 2, Ge−G > G2eG when G < 1, and
Ge−G < G2e−G when G > 1, which implies the boundaries
of different regions of G have the following relationship:

−W0(−S) < G0 = −2W0(−
√
S/2) < 1 <

−W−1(−S) < G1 = −2W−1(−
√
S/2).

(B-3)

Thus, Eq. (B-1) has solutions in the following three mono-
tone intervals:
(a) (0,−W0(−S): increasing interval;
(b) (−W−1(−S), G1]: decreasing interval;
(c) (G1, n): increasing interval.
Fig. 3(a) illustrates these monotone intervals. Since y′1(G1) =
0, y1(G1) is a local minimum of y1, as depicted in Fig. 3(a).
Table I gives the values of G at the cross points of y1 and y2
when r is in a different region, where GS , GA and GL are
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the values in monotone intervals (a), (b) and (c), respectively.
These values can be obtained by numerically solving (B-1).
From Table I, we can see that
(1) If 0 < r < y1(G1), Eq. (B-1) has only one root GS

and the attempt rate will converge to this root in a stable
network.

(2) If r = y1(G1), there are two roots GS and GA = GL =
G1. Using the drift analysis in [1], it is easy to show
that the attempt rate converges to GS when the network
reaches its stable state.

(3) If y1(G1) < r < 1, there are three roots GS , GA and GL,
and the attempt rate will converge to GL.

Thus, as shown in Fig. 3(a), when 0 < λ̂ ≤ 1/(e + X),
the value range of G at the steady state is a non-contiguous
region (0, G∗

S ] ∪ (G1, n), where G∗
S is the value of GS when

r = y1(G1). In other words, though G can be adjusted by
tuning r when M = ∞, it will experience a sudden change
from G∗

S to G1 at r = y1(G1). We use the thick lines in
Fig. 3(a) to indicate the changing trajectory of attempt rate G
if we tune r from 0 to 1 in a stable network.

As an example, we consider a network with n = 20,
λ̂ = 0.1 packets/slot and X = 2 slots. In this case, G1 =
−2W−1(−

√
S/2) = 5.48. We set r = y(G1) = 0.335 and

r = 0.4 > y(G1) = 0.335, which correspond to the cases
displayed in the second row and the third row of Table I.
Our simulation results in Fig. 4 show that the attempt rate
converges to GS = 0.14 if r = 0.335 and to GL = 6.38 if
r = 0.4, as the network reaches the steady state.

2) 1/(e +X) < λ̂≤4/(e2 + 4X): In this case, y1 and y2
have cross points in the following monotone intervals of y1:

(a) (0, G0): increasing interval;
(b) [G0, G1]:decreasing interval;
(c) (G1, n): increasing interval.

It follows that y1(G0) and y1(G1) are, respectively, the local
maximum and the local minimum of y1, as plotted in Fig. 3(b).
TABLE II gives the roots for Eq. (B-1). Similar to the previous
case, we find that
(1) If r≤y1(G1), the attempt rate converges to GS ,
(2) otherwise, the attempt rate converges to GL,
when the network reaches the stable state. This indicates that,
when 1/(e+X) < λ̂≤4/(e2+4X), the value range of G at the
steady state is also a non-contiguous range (0, G∗

S ]∪ (G1, n),
the same with the situation in the case of 0 < λ̂≤1/(e+X).
We use the thick line in Fig. 3(b) to display the trajectory of
G if we tune r from 0 to 1 in a stable network.

3) 4X/(e2 + 4X) < λ̂ < 1/X: In this situation, y1
monotonically increases when G increases from 0 to n. As
shown in Fig. 3(c), y1 and y2 have only one cross point such
that (B-1) has only one desirable root and G at the steady state
changes in a continuous region (0, n).

TABLE II
THE ROOTS FOR EQUATION (B-1) WHEN 1/(e+X) < λ̂≤4/(e2 + 4X)

G ∈ (0, G0) G ∈ [G0, G1] G∈[G1, n)
0 < r < y1(G1) GS - -
r = y1(G1) GS GA = G1 GL = G1

y1(G1) < r < y1(G0) GS GA GL

r = y1(G0) GS = G0 GA = G0 GL

y1(G0) < r < 1 - - GL

APPENDIX C
MINIMUM MEAN DELAY WHEN M = ∞

To obtain the minimum value of DM=∞ given by (62), we
take the derivative of DM=∞ with respect to G as follows:

dDM=∞

dG
= −

λ̂XeG
(
G− 1+

√
1−4λX
2λX

)(
G− 1−

√
1−4λX
2λX

)
(1− λX)(1− λ̂X)G2

.

(C-1)
This implies

dDM=∞

dG
< 0, if G < 1−

√
1−4λX
2λX or G > 1+

√
1−4λX
2λX

dDM=∞

dG
> 0, otherwise. (C-2)
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TABLE I
THE ROOTS FOR EQUATION (B-1) WHEN 0 < λ̂ < e−1

G ∈ (0,−W0(−S)) G ∈ (−W−1(−S), G1] G∈[G1, n)
0 < r < y1(G1) GS - -
r = y1(G1) GS GA = G1 GL = G1

y1(G1) < r < 1 GS GA GL

On the other hand, though attempt rate G monotonically
increases with transmission probability r, its value range is
different when λ̂ is different. As APPENDIX B shows,
(a) when 0 < λ̂ ≤ 4/(e2 + 4X), G is in the range (0, G∗

S ] ∪
(G1, n);

(b) when 4/(e2 + 4X) < λ̂ < 1/X , G is in the range (0, n).
It is easy to show that

G∗
S <

1−
√
1− 4λX

2λX
< 2 < G1 < n <

1 +
√
1− 4λX

2λX
.

(C-3)
Thus, we can derive the minimum mean delay under different
ranges of λ̂.
(a) 0 < λ̂ ≤ 4/(e2+4X): As APPENDIX B mentions, though

G can be adjusted by tuning r, it will experience a non-
contiguous change from G∗

S to G1 at r = y1(G1) if 0 <
λ̂ ≤ 4/(e2 +4X) and M = ∞. This implies that DM=∞
may also have a sudden change at r = y1(G1) in this
case, as we show below. According to (C-2) and (C-3),
DM=∞ is a decreasing function when G ∈ (0, G∗

S ] and
an increasing function when G ∈ (G1, n). It is easy to
show that the mean delay at G∗

S is less than that at G1.
Thus, DM=∞ reaches its minimum

D
∗
M=∞=

λX2

2(1−λX)
− 1

λ(1−λX)
+

n(1−λXG∗
S)e

G∗
S

(1−λX)(1−λ̂X)G∗
S

+X,

(C-4)
at G∗

S . According to (B-1), the corresponding transmis-
sion probability is given by

r∗M=∞ = y1(G
∗
S) =

λG∗
S

λ̂− (1− λ̂X)G∗
Se

−G∗
S

. (C-5)

When r is slightly larger than r∗M=∞, the mean delay will
suddenly change from D

∗
M=∞ to

DM=∞=
λX2

2(1−λX)
− 1

λ(1−λX)
+

n(1−λXG1)e
G1

(1−λX)(1−λ̂X)G1

+X.

For example, DM=∞ in Fig. 10(c) jumps from 28 slots
to 661 slots after r = r∗M=∞ = 0.1, if n = 50.

(b) 4/(e2 + 4X) < λ̂ < 1/X: According to (C-2) and (C-3),
DM=∞ first falls and then rises when G increases from
0 to n. DM=∞ achieves its minimum

D
∗
M=∞=

λX2

2(1−λX)
− 1

λ(1−λX)
+
n
(
1− 1−

√
1−4λX
2

)
e

1−
√

1−4λX
2λX

(1−λX)(1−λ̂X) 1−
√

1−4λX
2λX

+X,

(C-6)
at

G =
1−

√
1− 4λX

2λX
.

According to (B-1), the corresponding transmission prob-
ability is given as

r∗M=∞ =
1−

√
1−4λX
2X

λ̂− (1− λ̂X) 1−
√
1−4λX
2λX e−

1−
√

1−4λX
2λX

. (C-7)

APPENDIX D
MEAN NUMBER OF COMPLETE VACATION PERIODS

EXPERIENCED BY A PACKET

Consider packet A in Fig. 7. If packet A arrives in a busy
period, it will experience 1+

⌊
NO

M

⌋
complete vacation periods

before it can be served; otherwise, it will undergo
⌊
NO

M

⌋
complete vacation periods, where NO is the number of packets
waiting outside the virtual gate of buffer when it arrives. Since
a node is busy with probability λX and is in vacation with
probability 1 − λX , the mean number of complete vacation
periods experienced by packet A is given by

F = λX

(
1 + E

[⌊
NO

M

⌋])
+ (1− λX)E

[⌊
NO

M

⌋]
= λX + E

[⌊
NO

M

⌋]
.

(D-1)

Let Ω be the number of packets transmitted before packet A in
the busy period that it is served. Clearly, Ω = NO−M

⌊
NO

M

⌋
.

Thus, we have

E

[⌊
NO

M

⌋]
=

E[NO]− E[Ω]

M
. (D-2)

Notice that packet A sees N packets queued in the buffer
when it arrives, which includes NI packets waiting inside the
gate and NO packets waiting outside the gate. It follows that

E[NO] = E[N ]− E[NI ] = λW − λE[Ω]X, (D-3)

where we apply Little’s law for the second equality and E[Ω]
can be derived as follows. Given packet A is transmitted in
a busy period that j packets are served, the mean number of
packets transmitted ahead of it is j−1

2 . It is easy to show that
the probability that packet A is sent in such a kind of busy
period is jkj∑M

i=1 iki
, where kj,Pr{K = j} is the probability

that j packets are served in a busy period. Thus, we have

E[Ω] =
M∑
j=1

j − 1

2
· jkj∑M

i=1 iki
=

K ′′(1)

2K ′(1)
. (D-4)

Combining (D-1) and (D-4), we obtain

F = λX +
λW

M
− (1 + λX)K ′′(1)

2MK ′(1)
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