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Abstract—The emerging high-capacity optical networks makes
it urgent to design large-scale flexible mesh optical cross-connects
(OXCs). Though Clos network is the theory for building scalable
and cost-effective switching fabrics, the nonblocking conditions
of flex-grid optical Clos networks without wavelength conversion
remain unknown. This paper studies the nonblocking conditions
for the flex-grid OXC-Clos network, which is constructed from
a number of small-size standard OXCs. We first show that a
strictly nonblocking (SNB) OXC-Clos network will incur a high
cost, as small-granularity lightpaths may abuse central modules,
rendering them unavailable for large-granularity requests due to
frequency conflicts. We thus propose a granularity differential
routing (GDR) strategy, the idea of which is to restrict the set of
CMs that can be used by the lightpaths of each granularity. Under
the GDR strategy, we investigate two system models, granularity-
port binding and unbinding models, and prove the wide-sense
nonblocking (WSNB) conditions for OXC-Clos network. We show
that the cost of WSNB network is remarkably smaller than that
of SNB network, and find that the second model can lead to more
flexible network-bandwidth utilization than the first model only
at a small cost of switching fabrics.

Index Terms—Optical cross-connect, flex-grid optical network,
wide-sense nonblocking, strictly nonblocking.

I. INTRODUCTION

In recent years, the surge in Internet traffic caused by high-
performance computing services and multimedia services is
driving the continuous growth of optical network capacity. On
one hand, the bandwidth of one-fiber links will be exhausted
and the use of multiple fibers on optical links has been put on
the agenda. As Ref. [1] points out, optical fiber deployment is
growing at an annual rate of 15%. On the other hand, the data
rates of optical signals launched into the optical links climb
up from 10Gb/s to 100Gb/s, and will soon reach 400Gb/s and
above. It is very necessary to maximize spectral efficiency
according to the data rate and the transmission distance of each
demand [2]. In this context, the traditional fixed-grid optical
networks that divide the optical spectrum into fixed wavelength
grids will no longer work well, and flex-grid optical networks
are emerging to provide high spectral efficiency. Accordingly,
the design of network device should adapt to the new changes.

Meanwhile, optical cross-connect (OXC) has become the
key component of switching nodes in optical networks. As
Fig. 1 shows, a classical N × N OXC includes N 1 × N
wavelength selective switches (WSSes) at the input side and N
N×1 WSSes at the output side, with an N2×N2 shuffle inter-
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Fig. 1. A standard 3× 3 OXC, where Li stands for lightpath i and different
colors represent different optical frequencies.

connection network in between. The OXC is a flexible optical
switching fabric. If there is a common spectrum interval free
on an input and an output, the OXC can establish a lightpath
in a strictly nonblocking (SNB) manner. Fig. 1 displays three
lightpaths occupying different spectral bandwidths. However,
the scalability of classical OXC is restricted by the WSS, the
port count of which is currently limited to 49 [3]. The classical
OXC cannot meet the application requirement of future optical
networks, which will require optical nodes with hundreds of
ports due to the use of multiple fibers on each optical link.
Thus, it is highly desired to enhance the scalability of OXCs.

Clos network is the theory to construct a scalable and cost-
effective switching fabric. In the past decades, different electri-
cal/optical Clos switches [4]–[9] and the related nonblocking
conditions have been studied. However, only a few endeavors
have been made to apply this theory to construct scalable flex-
grid OXCs, called flex-grid OXC-Clos network in this paper,
whose nonblocking conditions are still unknown.

This paper studies the nonblocking conditions for flex-grid
OXC-Clos networks without wavelength converters (WCs). In
particular, we focus on the ability of flex-grid OXC-Clos net-
works to establish new lightpaths without any reconfiguration,
which is of great significance for industrial applications. Our
goal is to remarkably reduce the number of central modules
(CMs) needed by a nonblocking flex-grid OXC-Clos network.

We devise a granularity differential routing (GDR) strategy,
motivated by the derivation of the SNB condition for flex-
grid OXC-Clos networks. We demonstrate that the small-
granularity lightpaths in an SNB OXC-Clos network may oc-
cupy too many CMs, which then become unavailable for future
large-granularity requests due to spectral conflicts. Thus, a lot
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of CMs are needed by an SNB flex-grid OXC-Clos network.
The key idea of our GDR strategy is to restrict the set of CMs
that can be used by the lightpaths of each granularity, thereby
leaving more CMs for large-granularity requests. Under the
GDR strategy, we prove the wide-sense nonblocking (WSNB)
conditions for flex-grid OXC-Clos network. We show that the
number of CMs needed by a WSNB OXC-Clos network is
remarkably smaller than that by an SNB network.

This paper studies two system models under the flex-grid
scenario. The first one, named granularity-port binding (GPB)
model, stems from a practical application scenario, where each
port of the switch only carries the lightpaths with the same
granularity. The second one, called granularity-port unbinding
(GPuB) model, allows the lightpaths of different granularities
to coexist in a port. Compared to the GPB model, the GPuB
model introduces more flexibility in port utilization. We show
that the sufficient WSNB condition for the GPB model is the
necessary and sufficient WSNB condition for the GPuB model,
indicating that flexibly deploying lightpaths among the ports
only leads to a slightly high cost.

The rest of this paper is organized as follows. Section II
introduces the OXC-Clos network and two system models,
and analyzes the cost of SNB networks, according to which
we propose the GDR strategy and derive the WSNB conditions
under the GPB and GPuB models in Section III and Section
IV, respectively. The related works are reviewed in Section V.
Section VI concludes this paper.

II. PRELIMINARY

As Fig. 2 displays, an N × N symmetric flex-grid OXC-
Clos network, denoted by C(n, r,m), includes r n×m input
modules (IMs) at the input stage, m r × r central modules
(CMs) at the central stage, and r m × n output modules
(OMs) at the output stage, where each module is a standard
OXC module and N = n × r. The two OXC modules at the
adjacent stages are connected by a single fiber. From top to
bottom, we number the IMs by 1, · · · , α, · · · , r, the CMs by
1, · · · , γ, · · · ,m, and the OMs by 1, · · · , β, · · · , r. Similarly,
we number the inputs of each IM as 1, · · · , a, · · · , n, and the
outputs of each OM as 1, · · · , b, · · · , n.

In a flex-grid optical network, the spectrum of each port is
divided into W basic slots (bSlots), the width of which is 12.5
GHz [10]. In Fig. 2, a bSlot is represented by a slot. We index
W bSlots by 1, · · · , w, · · · ,W . A set of ω adjacent bSlots
indexed by w,w+ 1, · · · , w+ ω− 1 defines an ω-granularity
(ω-g) frequency slot, which is denoted by Λω

w in this paper,
where w and ω are two positive integers and w+ω−1 ≤ W .
The “flex-grid” means that the frequency slots with different
granularities can coexist in the network.

This paper considers the communication mode, in which the
network sets up an ω-g lightpath from an input to an output
if there is a frequency slot Λω

w free on them. We denote an
ω-g lightpath from input a of IM α to output b of OM β as
L (α, a, β, b,Λω

w). Similarly, a lightpath request is denoted by
R (α, a, β, b,Λω

w). For example, L1 in Fig. 2 is a 2-g lightpath,
denoted by L

(
α, 1, β, 2,Λ2

1

)
, and L2 and L3 are two 1-g
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Fig. 2. A flex-grid optical Clos Network C(n, r,m) with 3 lightpaths.

lightpaths, denoted by L
(
α, 2, r, 1,Λ1

1

)
and L

(
r, 2, β, 1,Λ1

2

)
.

Also, the spectrum interval used by a lightpath is represented
by a colored box covering several slots in the figure. As an
instance, the spectrum interval of L1 includes bSlots 1 and 2.

The OXC-Clos network has two routing constraints. That
is, two lightpaths cannot use the same CM, if
C1. they share the same IM and occupy the same bSlots, or
C2. they share the same OM and occupy the same bSlots.
The example for constraint C1 is L1 and L2 in Fig. 2 and that
for C2 is L1 and L3 in Fig. 2.

Definition 1. An OXC is SNB if a lightpath can always be
set up between an input and an output without rearranging
the paths of the existing lightpaths when the input and output
have the same idle spectrum interval.

Definition 2. An OXC is WSNB if a routing strategy exists for
setting lightpaths in such a way that a lightpath can always
be set up between an input and an output without rearranging
the paths of the existing lightpaths when the input and output
have the same idle spectrum interval.

It is trivial to show that one CM is enough for C with n = 1
to be SNB. In this case, C reduces to a classical OXC. Thus,
this paper only considers the case where n > 1.

A. System Models

To facilitate our study, we assume that there are K types of
lightpaths (or frequency slots) in the network and
A1. there are W = 2K−1 bSlots,
A2. the k-th type of lightpath occupies 2k−1 adjacent bSlots,

where k = 1, 2, · · · ,K.
Note that the idea of our approach in this paper is not limited
to the granularity pattern presented in A2 and can be applied
to other kinds of granularity patterns.

Also, we consider two models in this paper.
M1. Granularity-Port Binding (GPB) model: Once a port

is used by a type of lightpaths, this port can only carry
this type of lightpaths until it becomes completely free,
which means all the lightpaths on this port are torn down.

Fig. 3(a) plots an N×N OXC, each port of which carries 8
bSlots. Input 1 only carries 2-g lightpaths once it is occupied

932Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 13,2024 at 07:38:41 UTC from IEEE Xplore.  Restrictions apply. 



1 2 3 4 5 6 7 8
1

2

N

(a)

(b)

OXC

1 2 3 4 5 6 7 8
1

2

N

1 2 4 5 6 7 8
1

2

N

OXC

1 2 3 4 5 6 7 8
1

2

N

3

R

Fig. 3. Examples of (a) GPB model and (b) GPuB model, where K = 4 and
request R is represented by a dotted box.

by a 2-g lightpath. If input 1 becomes completely idle after all
the 2-g lightpaths are torn down, it can be rebound by other
types of lightpaths.

The GPB model stems from practical applications. There is
one type of most cost-effective transceiver, when building an
optical network. It is a common practice in real networks to
adopt one modulation format with one granularity, which can
simplify network management and maintenance. Hence, the
single-fiber network typically has only one granularity of op-
tical signals. When the network is upgraded by installing more
fibers, a different type of transceiver with another granularity
may likely be added to match the newly installed fibers. In this
case, the flex-grid optical network will be possibly deployed
according to the GPB model in the near future.

To avoid bandwidth fragmentation and maximize bandwidth
utilization under the GPB model, this paper makes the follow-
ing restriction:
A3. a 2k-g lightpath is carried by a 2k-g frequency slot, and

the i-th 2k-g frequency slot is defined by the set

Λ2k

2k(i−1)+1 =
{
2k(i− 1) + 1, · · · , 2ki

}
.

For example, Λ22

5 = {5, 6, 7, 8} in Fig. 3(a) defines the second
22-g frequency slot, while bSlots 3 through 6 do not form a 22-
g frequency slot. The violation of A3 may lead to bandwidth
fragmentation. Consider the following case. If input N in Fig.
3(a) carries a 22-g lightpath using bSlots 3 through 6, bSlots
1, 2, 7, and 8 will be wasted under the GPB model until this
input becomes completely idle.

A3 implies that a 2k-g frequency slot can accommodate up
to 2k−i 2i-g lightpaths or be occupied by a 2j-g lightpath,
where i = 0, 1, · · · , k − 1, and j = k, k + 1, · · · ,K − 1.

We notice that the flex-grid networks have just been built
for less than 10 years. As traffic increases, the optical network
will undergo multiple upgrades. In this case, the GPB model
may lead to an inflexible utilization of network-link capacity.
For example, although input 1 in Fig. 3(a) has two free bSlots,
it cannot offer bandwidth to a 1-g request due to granularity-
port binding. Allowing multiple granularities coexisting in the
same fiber would be a better choice. We thus slightly relax the
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Fig. 4. Flex-grid OXC-Clos Network C(2, 2, 3) is not SNB, where request
R is represented by a dotted box.

constraint imposed by granularity-port binding and explore a
more flexible model as follows.
M2. Granularity-Port unBinding (GPuB) model: Each port

can carry different types of lightpaths.
The “slightly relax” means we still consider A3 in the GPuB
model. Fig. 3(b) illustrates the GPuB model, where input 1
has 3 idle bSlots. As A3 specifies, if a 2-g request from input
1 to output N arrives, input 1 will allocate bSlots 1 and 2 to
this request, instead of bSlots 2 and 3.

B. Cost of SNB Flex-grid Clos Network

The SNB condition for traditional Clos networks, i.e., m ≥
2n−1 [4], cannot be applied to flex-grid OXC-Clos Networks.
Fig. 4 is an OXC-Clos network C(2, 2, 3), where there are three
existing lightpaths and m ≥ 2n − 1 = 3. However, as Fig. 4
plots, R(1, 2, 1, 2,Λ2

1) is blocked, since lightpaths L1 and L2

share the same IM with R and use CMs 1 and 3 while lightpath
L3 shares the same OM with R and passes through CM 2. No
CM is available for R due to frequency conflicts. In fact, the
number of CMs needed by an SNB flexible OXC-Clos is very
large, as we show in the following theorem.

Theorem 1. When K types of lightpaths coexist, C(n, r,m)
is SNB iff

m ≥ 2K(n− 1) + 1. (1)

Proof. Suppose there is a request R
(
α, a, β, b,Λ2K−1

1

)
from

input a of IM α to output b of OM β. Consider the worst
case, where frequency slot Λ2K−1

1 is busy in carrying 2K−1

1-g lightpaths on all other inputs of IM α and all other outputs
of OM β.

Let Sα and Sβ be the set of CMs used by the 1-g lightpaths
from IM α and that used by the 1-g lightpaths ahead to OM
β, respectively. Clearly,

|Sα| ≤ 2K−1(n− 1),

and
|Sβ | ≤ 2K−1(n− 1),

where the equalities hold if each lightpath uses a separate CM.
Also,

|Sα ∪ Sβ | ≤ |Sα|+ |Sβ | = 2K(n− 1),

where the inequality holds with equality when Sα ∩ Sβ = ∅.
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According to routing constraints C1 and C2, request R can
be satisfied only when there is at least one more CM that is
not used by the lightpaths that originate from IM α or the
lightpaths that go ahead to OM β. We thus need

m = 2K(n− 1) + 1

CMs to accommodate R.

Clearly, (1) immediately reduces to the SNB condition of
traditional Clos network when K = 1, i.e., there is only one
type of lightpaths in the network.

Theorem 1 shows that the number of CMs required by an
SNB flex-grid OXC-Clos network is large, which is attributed
to the fact that small-granularity lightpaths (e.g., 1-g light-
paths) may abuse the CMs such that a large number of CMs
will not be available for future large-granularity requests. As
Fig. 4 plots, the two 1-g lightpaths L1 and L2 at input 1 of IM
α use two different CMs, though they can share the same CM
since they use different bSlots. This motivates us to devise a
routing strategy, which restricts the set of CMs occupied by
small-granularity lightpaths.

III. WSNB CONDITION UNDER GPB MODEL

In this section, we will develop a routing strategy under
the GPB model to restrict the set of CMs occupied by small-
granularity lightpaths, such that the number of CMs needed
by a nonblocking OXC-Clos network can be reduced. The
key problem is to figure out the set of CMs that each type of
lightpaths can employ for routing. We solve this problem in
an inductive manner. Specifically, we first find the sets of CMs
that can be used by 1-g lightpaths and 2-g lightpaths in section
III-A and III-B, from which section III-C then proposes the
GDR strategy and proves the WSNB condition.

A. CMs that 1-g Lightpaths can Use

We first determine the minimal number of CMs required by
C to route 1-g lightpaths without reconfiguration when all K
types of lightpaths coexist. With this information, we can then
specify the set of CMs, via which the 1-g lightpaths should
be routed.

Definition 3. In the case where C needs to support K types of
lightpaths, C is SNB for 2k-g lightpaths if it can always satisfy
a 2k-g request R

(
α, a, β, b,Λ2k

w

)
without reconfiguration as

long as frequency slot Λ2k

w is available on both input a of IM
α and output b of OM β, where w is the first bSlot of a 2k-g
frequency slot and k = 0, 1, · · · ,K − 1.

Lemma 1. C is SNB for 1-g lightpaths under the GPB model
iff m ≥ 2n− 1.

Proof. Suppose there is a request R
(
α, a, β, b,Λ1

w

)
. Consider

the case, where
(a) All other n− 1 inputs of IM α are busy carrying n− 1

lightpaths, each of which occupies Λ1
w;

(b) All other n−1 outputs of OM β are busy carrying n−1
lightpaths, each of which occupies Λ1

w.

1

2
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1 2
1

2

1

2

1

2

1

2

R

L1

L2

Fig. 5. C(2, 2, 3) is SNB for 1-g lightpaths though it carries two types of
lightpaths.

The granularity of the lightpaths carried by each port is the
same and could be any of 1, 2, · · · , or 2K−1.

Let Sα be the set of CMs used by the lightpaths that occupy
Λ1

w and originate from IM α, and Sβ be the set of CMs used
by the lightpaths that occupy Λ1

w and go ahead to OM β.
Clearly, |Sα| = |Sβ | = n− 1. Also,

|Sα ∪ Sβ | ≤ |Sα|+ |Sβ | = 2(n− 1),

where the inequality holds with equality when Sα ∩ Sβ = ∅.
According to constraints C1 and C2, R can be satisfied only

if there is at least one CM that is not used by the lightpaths
mentioned in (a) and (b). We thus need

m = 2n− 1

CMs to accommodate R, which proves this lemma.

Lemma 1 is illustrated in Fig. 5, where 3 CMs are enough
to satisfy a 1-g request R without any reconfiguration, though
a 2-g lightpath L1 and a 1-g lightpath L2 are in the network.

B. CMs that 2-g Lightpaths can Use

Lemma 1 allows restricting the routing of all 1-g lightpaths
to a set of 2n−1 CMs, such that more CMs can be left for the
requests with larger granularity. We are now ready to check
the minimum number of CMs required to route 1-g lightpaths
and 2-g lightpahts without any reconfiguration when there is
a routing restriction for 1-g lightpaths as follows.

Routing Strategy for 1-g lightpaths:
1) Specify a fixed set of 2n− 1 CMs, denoted by M0, via

which all 20-g lightpaths can only be routed;
2) Lightpaths with granularity larger than 20 can be routed

via the set of all CMs, denoted by M .
Herein, we specify M0 = {1, 2, · · · , 2n− 1}.

Definition 4. In the case where C needs to support K types of
lightpaths, C is WSNB for 2k lightpaths if it can always satisfy
a 2k-g request R

(
α, a, β, b,Λ2k

w

)
without reconfiguration

under a routing strategy as long as frequency slot Λ2k

w is free
on both input a of IM α and output b of OM β, where w is the
first bSlot of a 2k-g frequency slot and k = 0, 1, · · · ,K − 1.

Before finding the minimal number of CMs required to route
1-g and 2-g lightpaths without reconfiguration when C has to
support K types of lightpaths, we need the following lemma.
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Lemma 2. f(x) = x − ⌈x/2 + a⌉ is non-decreasing, where
x = 1, 2, · · · and a is an integer constant.

Lemma 3. Under Routing Strategy for 1-g lightpaths, C is
WSNB for both 1-g and 2-g lightpaths under the GPB model
iff m ≥ 3n− 2.

Proof. Consider a request R(α, a, β, b,Λ2
w) that sees the fol-

lowing situation:
(a) pα inputs of IM α and pβ outputs of OM β are busy

carrying 1-g lightpaths via Λ2
w, and

(b) n−pα−1 inputs of IM α and n−pβ −1 outputs of OM
β are busy carrying the last K−1 types of lightpaths via
Λ2

w, and each port only carries one type of lightpaths,
where pα, pβ = 0, 1, · · · , n− 1.

Let B0 be the set of CMs used by the 1-g lightpaths that
are carried by IM α or OM β via Λ2

w. According to lemma
1, all 1-g lightpaths can be routed via the CMs in M0, which
means

|B0| ≤ |M0| = 2n− 1. (2)

Let Sα be the set of CMs used by the last K − 1 types of
lightpaths that occupy Λ2

w and originate from IM α, and Sβ

be the set of CMs used by the last K − 1 types of lightpaths
that occupy Λ2

w and go ahead to OM β. Note that a lightpath
with granularity larger than 1 cannot share the same CM with
another one that also uses the bSlots in Λ2

w, if both of them
originate from IM α or go ahead to OM β. It follows that

|Sα| = n− pα − 1,

|Sβ | = n− pβ − 1,

and thus

|Sα ∪ Sβ | ≤ |Sα|+ |Sβ | = 2(n− 1)− (pα + pβ) . (3)

where the inequality holds with equality when Sα ∩ Sβ = ∅.
pα + pβ in (3) can be determined as follows. Any two 1-g

lightpaths carried by pα inputs of IM α or pβ outputs of OM
β via Λ2

w can share the same CM, as long as they do not
use the same bSlot. This implies that |B0| must be less or
equal to the number of these lightpaths. Furthermore, the total
number of bSlots in Λ2

w on pα inputs of IM α and pβ outputs
of OM β is 2(pα+pβ), which can carry up to 2(pα+pβ) 1-g
lightpaths. Thus, we have |B0| ≤ 2(pα + pβ) or

pα + pβ ≥
⌈
|B0|
2

⌉
. (4)

It follows from (3) through (4) that the set of CMs that are
not available for request R satisfies

|B0 ∪ Sα ∪ Sβ | ≤ |B0|+ |Sα ∪ Sβ |
≤ |B0|+ 2(n− 1)− (pα + pβ)

≤ |B0|+ 2(n− 1)−
⌈
|B0|
2

⌉
≤ |M0|+ 2n− 2−

⌈
|M0|
2

⌉
= 2n− 1 + 2n− 2− n

= 3n− 3, (5)

1

1

2

3

1 2
1

2R

L2
L1

L3

4

2

1

2

1

1

2

2

1

2

Fig. 6. C(2, 2, 4) is WSNB for 20-g and 21-g lightpaths, where M0 =
{1, 2, 3} and M1 = {1, 2, 3, 4}.

where we use lemma 2 and (2) for the fourth inequality. For
an arbitrary n ≥ 2, the inequality of (5) holds for equality if
R sees the following situation when it arrives:
(i) In IM α, each of the n−1 inputs carries 2 20-g lightpath

via Λ2
w, and

(ii) In OM β, one output carries 1 20-g lightpath via Λ2
w, and

each of the other n − 2 outputs carries 1 21-g lightpath
via Λ2

w.
All the lightpaths in (i) and (ii) are different and use different
CMs. In particular, 2n−1 20-g lightpaths are routed via CMs
1, 2, · · · , 2n−1, and n−2 21-g lightpaths are routed via CMs
2n, 2n+1, · · · , 3n−3, which conforms with the GDR strategy.

We thus need m ≥ 3n− 2 CMs to satisfy R.

Lemma 3 implies the OXC-Clos network is WSNB for both
1-g and 2-g lightpaths, under the routing strategy as follows:

1) Specify a CM set M0 = {1, 2, · · · , 2n− 1} for all 20-g
lightpaths, via which 20-g lightpaths can only be routed;

2) Specify a CM set M1 = {1, 2, · · · , 3n− 2} for all 21-g
lightpaths, via which 21-g lightpaths can only be routed;

3) Lightpaths with granularity larger than 21 can be routed
via the set of all CMs, denoted by M .

Fig. 6 illustrates the routing strategy for 20-g and 21-g light-
paths in C(2, 2, 4), where the 20-g lightpaths L1, L2, and L3

are routed via CMs 1, 2, 3, and the 21-g lightpaths can employ
all the CMs.

C. GDR strategy and WSNB condition

In this part, we generalize lemmas 1 and 3 to propose the
GDR strategy for K types of lightpaths, and prove the WSNB
condition for flex-grid OXC-Clos networks.

The GDR Strategy in general case is as follows:

GDR Strategy
1) Specify a set of CMs

M i = {1, 2, · · · , 2n− 1 + i(n− 1)}

for 2i-g lightpaths, via which all the 2i-g lightpaths can
only be routed, where i = 0, 1, · · · ,K − 2;

2) 2K−1-g lightpaths can be routed via the set of all CMs,
denoted by M . Clearly, MK−1 = M .
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It is easy to know that the GDR strategy is quite simple and
does not increase the operation complexity.

We will derive the minimal value of |M | and prove that C
with the GDR strategy is WSNB when it needs to support K
types of lightpaths. Before that, we need the following lemma.

Lemma 4. Consider J sets F 0,F 1, · · · ,F J−1 and F̂ j ≜⋃j
i=0 F i , where j = 0, 1, · · · , J−1. The following inequality

J−1∑
j=0

(
2j |F j |

)
≥ 2J−1

∣∣∣F̂ J−1

∣∣∣− J−2∑
j=0

(
2j

∣∣∣F̂ j

∣∣∣)
always holds, and the inequality is satisfied with equality when
F 0,F 1, · · · ,F J−1 are mutually disjoint.

Proof. Since∣∣∣F̂ j

∣∣∣ = ∣∣∣F̂ j−1

∣∣∣+ |F j | −
∣∣∣F̂ j−1 ∩ F j

∣∣∣ ,
∀j = 1, 2, · · · , J − 1, we have

J−1∑
j=0

(
2j |F j |

)
= |F 0|+ 2 |F 1|+ · · ·+ 2j |F j |+ · · ·+ 2J−1 |F J−1|

=
∣∣∣F̂ 0

∣∣∣+ · · ·+ 2j
(∣∣∣F̂ j

∣∣∣− ∣∣∣F̂ j−1

∣∣∣+ ∣∣∣F̂ j−1 ∩ F j

∣∣∣)+ · · ·

+ 2J−1
(∣∣∣F̂ J−1

∣∣∣− ∣∣∣F̂ J−2

∣∣∣+ ∣∣∣F̂ J−2 ∩ F J−1

∣∣∣)
=−

∣∣∣F̂ 0

∣∣∣− 2
∣∣∣F̂ 1

∣∣∣− · · · − 2J−2
∣∣∣F̂ J−2

∣∣∣+ 2J−1
∣∣∣F̂ J−1

∣∣∣
+
(
2
∣∣∣F̂ 0 ∩ F 1

∣∣∣+ · · ·+ 2J−1
∣∣∣F̂ J−2 ∩ F J−1

∣∣∣)
≥−

∣∣∣F̂ 0

∣∣∣− 2
∣∣∣F̂ 1

∣∣∣− · · · − 2J−2
∣∣∣F̂ J−2

∣∣∣+ 2J−1
∣∣∣F̂ J−1

∣∣∣
=2J−1

∣∣∣F̂ J−1

∣∣∣− J−2∑
j=0

(
2j

∣∣∣F̂ j

∣∣∣) .

It is clear that the equality holds when F̂ j−1 ∩ F j = ∅, that
is, F 0,F 1, · · · ,F J−1 are mutually disjoint.

Under the GPB model, we only obtain the sufficient condi-
tion in general case for WSNB C, which is required to support
K types of lightpaths.

Theorem 2. C is WSNB for the 20-g, 21-g,· · · , and 2k-g
lightpaths under the GPB model, if

m ≥ 2n− 1 + k(n− 1), (6)

where k = 0, 1, · · · ,K − 1.

Proof. Lemmas 1 and 3 show this theorem holds for k = 0
and 1. We prove that if this theorem is true for k = i, where
i = 2, 3, · · · ,K − 2, it also holds for k = i+ 1.

Consider a 2i+1-g request R
(
α, a, β, b,Λ2i+1

w

)
that sees

the following situation:
(a) pjα inputs of IM α and pjβ outputs of OM β are busy in

carrying 2j-g lightpaths via Λ2i+1

w , and
(b) n−

∑i
j=0 p

j
α − 1 inputs of IM α and n−

∑i
j=0 p

j
β − 1

outputs of OM β are busy in carrying the last K − i− 1

types of lightpaths via Λ2i+1

w , and each port only carries
one type of lightpaths,

where pjα, p
j
β = 0, 1, · · · , n− 1 and j = 0, 1, · · · , i. The total

number of ports busy in Λ2i+1

w at IM α and OM β is 2n− 2.
Let Bj be the set of CMs used by the 2j-g lightpaths that are

carried by IM α or OM β via Λ2i+1

w . Define B̂j =
⋃j

l=0 Bl.
According to the GDR strategy and the induction hypothesis,
all lightpaths in B̂j can be routed via the CMs in M j under
the GDR strategy. Thus, there is∣∣∣B̂j

∣∣∣ ≤ |M j | . (7)

Note that, for some combinations of n and i, the equality of (7)
may be always unachievable in the GPB model. For example,
consider the case where i = 2n− 1. As a port of C can only
carry one type of lightpaths, R cannot see at least one type of
lightpaths at the 2n− 2 ports busy in Λ2i+1

w at IM α and OM
β. In this case, if the 2j-g lightpath does not appear, there is∣∣∣B̂j

∣∣∣ = ∣∣∣B̂j−1

∣∣∣ ≤ |M j−1| < |M j | ,

where j = 1, 2, · · · , i.
Let Sα be the set of CMs used by the last K − i− 1 types

of lightpaths that occupy Λ2i+1

w and originate from IM α, and
Sβ be the set of CMs used by the last K − i − 1 types of
lightpaths that occupy Λ2i+1

w and go ahead to OM β. Note that
a lightpath with granularity larger than 2i cannot employ the
same CM with another one that also uses the bSlots in Λ2i+1

w ,
if they share IM α or OM β. It follows that

|Sα| = n−
i∑

j=0

pjα − 1,

|Sβ | = n−
i∑

j=0

pjβ − 1,

and thus

|Sα ∪ Sβ | ≤ |Sα|+ |Sβ | = 2n− 2−
i∑

j=0

(
pjα + pjβ

)
, (8)

where the inequality holds with equality when Sα ∩ Sβ = ∅.
pjα + pjβ in (8) can be determined as follows. Any two 2j-g

lightpaths carried by pjα inputs of IM α or pjβ outputs of OM β

via Λ2i+1

w can share the same CM, as long as they do not use
the same bSlot. This implies that |Bj | must be less or equal
to the number of these lightpaths. Also, the total number of
bSlots in Λ2i+1

w on pjα inputs of IM α and pjβ outputs of OM β

is 2i+1
(
pjα + pjβ

)
, which can carry up to 2i−j+1

(
pjα + pjβ

)
2j-g lightpaths according to A3. Thus, we have

|Bj | ≤ 2i−j+1
(
pjα + pjβ

)
.

Multiplying both sides of the inequality by 2j and summing
over all js, we have

i∑
j=0

(
2j |Bj |

)
≤ 2i+1

i∑
j=0

(
pjα + pjβ

)
.
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TABLE I
CORRECTNESS OF THEOREM 1

n K # of CMs needed 2n− 1 + (K − 1)(n− 1)
2 4 6 6
11 4 51 51
4 6 21 22
11 6 71 71
2 10 11 12
5 10 45 45
7 10 66 67

It follows that
i∑

j=0

(
pjα + pjβ

)
≥

⌈∑i
j=0

(
2j |Bj |

)
2i+1

⌉

≥


2i
∣∣∣B̂i

∣∣∣−∑i−1
j=0

(
2j

∣∣∣B̂j

∣∣∣)
2i+1


≥


2i
∣∣∣B̂i

∣∣∣−∑i−1
j=0

(
2j |M j |

)
2i+1

 , (9)

where we use lemma 4 for the second inequality, and (7) for
the third inequality. It follows from (8) through (9) that the
set of CMs that are not available for request R satisfies∣∣∣B̂i ∪ Sα ∪ Sβ

∣∣∣
≤
∣∣∣B̂i

∣∣∣+ |Sα ∪ Sβ |

≤
∣∣∣B̂i

∣∣∣+ 2n− 2−
i∑

j=0

(
pjα + pjβ

)

≤
∣∣∣B̂i

∣∣∣+ 2n− 2−


2i
∣∣∣B̂i

∣∣∣−∑i−1
j=0

(
2j |M j |

)
2i+1


≤ |M i|+ 2n− 2−

⌈
2i |M i| −

∑i−1
j=0

(
2j |M j |

)
2i+1

⌉
=2n− 1 + i(n− 1) + 2n− 2− n

=2n− 2 + (i+ 1)(n− 1), (10)

where we use lemma 2 and (7) for the fourth inequality. Since
we use (7) in the derivation of (10), the equality of (10) may
be always unachievable for some combinations of n and i. It
is thus only sufficient to show R can be satisfied if there are

m ≥ 2n− 1 + (i+ 1)(n− 1)

CMs, which proves this theorem.

To verify the correctness of theorem 2, we write a program
to exhaustively enumerate all the cases for each pair of n and
K to find the number of CMs needed by the worst case. Table
I confirms that the number of CMs needed by each worst case
is upper bounded by the sufficient condition (6). For example,
when n = 2 and K = 10, the maximum number of required
CMs is 11, which is less than

2n− 1 + (K − 1)(n− 1) = 2× 2− 1 + 9× (2− 1) = 12.

TABLE II
A WORST CASE WHERE n = 2 AND K = 10.

i 0 1 2 3 4 5 6 7 8 9∣∣∣B̂i

∣∣∣ 0 0 0 6 6 6 6 10 10 11
|M i| 3 4 5 6 7 8 9 10 11 12

Moreover, for n = 2 and K = 10, we check one of the worst
cases, where a request R

(
α, 1, β, 1,Λ29

1

)
sees input 2 of IM

α carries 6 23-g lightpaths and output 2 of OM β carries 4
27-g lightpaths via Λ29

1 . The 6 23-g lightpaths employ CMs
1 through 6 and the 4 27-g lightpaths use CMs 7 through 10.
As other 8 types of lightpaths do not appear at IM α and OM
β, the equality of (7) may not hold, as Table II displays. For
instance,

∣∣∣B̂0

∣∣∣ < |M0| since there is no 1-g lightpath. In this
case, we need 11 CMs to satisfy the request R, meaning that
m = |M9| ≥ 12 is only the sufficient condition for WSNB.

IV. WSNB CONDITION UNDER GPUB MODEL

Different from the GPB model, the GPuB model allows
each port to carry various types of lightpaths simultaneously.
It is obvious that the GPuB model provides more flexibility for
bandwidth utilization of optical networks. In this section, we
study the WSNB condition for OXC-Clos networks under the
GPuB model, following the GDR strategy. Our results show
that the flexibility comes with the slight increase of the cost
of OXC-Clos networks.

Similar to Section III, this part proves the WSNB condition
in an inductive manner. Following the GDR strategy and the
arguments used in Section III, we have the following lemmas.

Lemma 5. C is SNB for 20-g lightpaths under the GPuB model
iff m ≥ 2n− 1.

Lemma 6. C is WSNB for 20-g and 21-g lightpaths under the
GPuB model iff m ≥ 3n− 2.

The GPuB model allows different types of lightpaths to
share the same port. When i ≥ 2n− 1, a 2i+1-g request from
IM α to OM β could see all i + 2 types of lightpaths in its
required frequency slot at IM α and OM β under the GPuB
model, which is different from the situation under the GPB
model as we show in theorem 2. Intuitively, the number of
CMs occupied by the lightpaths that are carried by a given set
of ports under the GPuB model would be larger than that under
the GPB model. We will show that there always exists at least
one case such that (7) holds with equality for any combination
of n and i. Thus, the sufficient condition for WSNB OXC-Clos
networks under the GPB model changes to the necessary and
sufficient condition under the GPuB model, implying that the
GPuB model increases the flexibility of bandwidth utilization
only with a slightly increased cost.

Theorem 3. C is WSNB for the 20-g, 21-g, · · · , and 2k-g
lightpaths under the GPuB model, iff

m ≥ 2n− 1 + k(n− 1), (11)
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where k = 0, 1, · · · ,K − 1.

Proof. Lemmas 5 and 6 show this theorem holds for k = 0
and 1. We prove that if this theorem is true for k = i, where
i = 2, 3, · · · ,K − 2, it also holds for k = i+ 1.

Consider the case where a newly arrived 2i+1-g request
R
(
α, a, β, b,Λ2i+1

w

)
sees the following situation:

(a) pα inputs of IM α and pβ outputs of OM β are busy in
carrying the first i+1 types of lightpaths via Λ2i+1

w , and
(b) n − pα − 1 inputs of IM α and n − pβ − 1 outputs of

OM β are busy in carrying the last K − i − 1 types of
lightpaths via Λ2i+1

w ,
where pα, pβ = 0, 1, · · · , n− 1.

Let Bj be the set of CMs used by the 2j-g lightpaths that are
carried by IM α or OM β via Λ2i+1

w . Define B̂j =
⋃j

l=0 Bl.
According to the GDR strategy and the induction hypothesis,
all lightpaths in B̂j can be routed via the CMs in M j under
the GDR strategy. Thus, there is∣∣∣B̂j

∣∣∣ ≤ |M j | . (12)

Let Sα be the set of CMs used by the last K − i− 1 types
of lightpaths that occupy Λ2i+1

w and originate from IM α, and
Sβ be the set of CMs used by the last K − i − 1 types of
lightpaths that occupy Λ2i+1

w and go ahead to OM β. Note
that a lightpath with granularity larger than 2i cannot share
the same CM with another one that also uses the bSlots in
Λ2i+1

w , if they share IM α or OM β. It follows that

|Sα| = n− pα − 1,

|Sβ | = n− pβ − 1,

and thus

|Sα ∪ Sβ | ≤ |Sα|+ |Sβ | = 2n− 2− (pα + pβ) , (13)

where the inequality holds with equality when Sα ∩ Sβ = ∅.
pα+pβ in (13) can be determined as follows. Any two 2j-g

lightpaths carried by pα inputs of IM α or pβ outputs of OM β

via Λ2i+1

w can share the same CM, as long as they do not use
the same bSlot. This implies that the number of bSlots used
by 2j-g lightpaths should be larger than or equal to 2j |Bj |.
Also, the total number of bSlots in Λ2i+1

w on pα inputs of IM
α and pβ outputs of OM β is 2i+1 (pα + pβ). This implies

i∑
j=0

(
2j |Bj |

)
≤ 2i+1 (pα + pβ) .

It follows that

pα + pβ ≥

⌈∑i
j=0

(
2j |Bj |

)
2i+1

⌉

≥


2i
∣∣∣B̂i

∣∣∣−∑i−1
j=0

(
2j

∣∣∣B̂j

∣∣∣)
2i+1


≥


2i
∣∣∣B̂i

∣∣∣−∑i−1
j=0

(
2j |M j |

)
2i+1

 . (14)

where we use lemma 4 for the second inequality, and (12) for
the third inequality. It follows from (13) through (14) that the
set of CMs that are not available for request R satisfies∣∣∣B̂i ∪ Sα ∪ Sβ

∣∣∣
≤
∣∣∣B̂i

∣∣∣+ |Sα ∪ Sβ |

≤
∣∣∣B̂i

∣∣∣+ 2n− 2− (pα + pβ)

≤
∣∣∣B̂i

∣∣∣+ 2n− 2−


2i
∣∣∣B̂i

∣∣∣−∑i−1
j=0

(
2j |M j |

)
2i+1


≤ |M i|+ 2n− 2−

⌈
2i |M i| −

∑i−1
j=0

(
2j |M j |

)
2i+1

⌉
=2n− 1 + i(n− 1) + 2n− 2− n

=2n− 2 + (i+ 1)(n− 1). (15)

where the fourth inequality follows from lemma 2 and (12).
For arbitrary n ≥ 2 and i, the inequality of (15) is satisfied
with equality, if request R sees the following situation when
it arrives:
(i) In IM α, each of n−1 inputs carries 2 20-g lightpaths and

i lightpaths, the granularities of which are 21, 22, · · · , 2i.
All the lightpaths are allocated in Λ2i+1

w side-by-side in
decreasing order of the granularity, so that each of them
is carried by a frequency slot defined by assumption A3.
IM α carries 2(n − 1) 20-g lightpaths and n − 1 2j-g
lightpaths in total, where j = 1, 2, · · · , i.

(ii) In OM β, one output carries a 20-g lightpath via Λ2i+1

w ,
and each of other n−2 outputs carries a 2i+1-g lightpath
via Λ2i+1

w . OM β carries 1 20-g lightpath and n−2 2i+1-g
lightpaths in total.

All the lightpaths in (i) and (ii) are different and use different
CMs, and 2n− 1 20-g lightpaths are routed via the CMs in

B0 = {1, 2, · · · , 2n− 1} ,

and n− 1 2j-g lightpaths are routed via the CMs in

Bj = {2n+ (j − 1)(n− 1), · · · , 2n− 1 + j(n− 1)} ,

where j = 1, · · · , i, and n − 2 2i+1-g lightpaths are routed
via the CMs in

Bi+1 = {2n+ i(n− 1), · · · , 2n− 2 + (i+ 1)(n− 1)} ,

which is consistent with the GDR strategy.
It thus needs m ≥ 2n− 1 + (i+ 1)(n− 1) CMs to satisfy

R.

Fig. 7 plots a C (3, 3, 9) where 3 types of lightpaths coexist.
According to the GDR strategy, |M0| = 5 and |M1| = 7. A
request R

(
2, 3, 3, 3,Λ4

1

)
sees the following situation:

(i) In IM 2, inputs 1 and 2 each carry a 2-g lightpath via
Λ2

1 including bSlots 1 and 2, and 2 1-g lightpaths via Λ2
3

including bSlots 3 and 4. IM 2 carries 2 2-g lightpaths
and 4 1-g lightpahts in total.
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Fig. 7. R
(
2, 3, 3, 3,Λ4

1

)
sees the worst case in C (3, 3, 9) under the GPuB

model.

(ii) In OM 3, output 1 carries a 1-g lightpath using Λ1
1, and

output 2 carries a 4-g lightpath using Λ4
1.

Specifically, 5 1-g lightpaths are routed via CMs 1 through 5,
2 2-g lightpaths via CMs 6 and 7, and 1 4-g lightpath via CM
8, which is consistent with the GDR strategy. We thus need
one more CM (i.e., 9 CMs in total) to satisfy R.

From the comparison of (6), (11) and (1), it is easy to show
that a WSNB OXC-Clos network needs much fewer CMs than
an SNB OXC-Clos network in the flex-grid scenario. Also,
the GDR strategy does not introduce any routing complexity.
Similar to the SNB network, the WSNB network can establish
a new lightpath without reconfiguration. Therefore, the WSNB
OXC-Clos network can remarkably reduce the hardware cost
with little cost of operation complexity.

However, the situation is different in the fixed-grid network,
where K = 1. In this case, (6) and (11) change to m ≥ 2n−1,
indicating that the SNB and WSNB OXC-Clos networks have
the same cost, which is consistent with the conclusion of [11].
This also verifies the correctness of our results.

V. RELATED WORKS

Several designs [12]–[21] have been proposed to improve
the scalability of OXCs at the expense of nonblocking prop-
erty. A multi-stage heterogeneous OXC was devised in [12],
the idea of which is to decompose each 1×N WSS in the stan-
dard OXC to a two-stage WSS structure and replace each WSS
in the second stage by a wavelength-insensitive optical space
switch. Another type of large-scale OXC is the interconnection
of several OXCs in a ring topology [18]–[21]. Both of them
are internally blocking. Applying such an internally-blocking
OXC to the optical network will remarkably complicate the
process of routing and spectrum allocation [8], [22].

The earliest Clos network that is able to support connections
of different granularities at the same time is the multi-rate Clos
network [7], [23]–[26] studied in the 1990s. The multi-rate
Clos network is quite different from the flex-grid switching

network. First, the former is an electrical switching network.
Second, a nonblocking multi-rate Clos network can establish
a connection from an input to an output, if the idle spectrum
at the input and the output can provide enough bandwidth for
the request. The idle spectra at the input and the output may
be different and could be discontinuous. As a comparison, a
nonblocking flex-grid switching network can set up a lightpath,
only when the input and the output have a common continuous
optical spectrum that can accommodate the request. Hence,
the nonblocking conditions for multi-rate Clos networks [7],
[23]–[26] cannot be applied to flex-grid Clos networks.

Refs. [27]–[29] proposed two Clos-like flex-grid switches,
called space-wavelength-space (SWS) switch [27] and
wavelength-space-wavelength (WSW) switch [28]. In the SWS
switch, each IM and each OM are OXCs, and each CM is
a bandwidth-variable wavelength-converting switch (BV-WS),
which is an OXC embedded with bandwidth-variable tunable
waveband converters (BV-TWBCs). In the WSW switch, each
IM and each OM are BV-WSs, while each CM is an OXC.
Refs. [27] and [29] derived the SNB conditions, which specify
the number of CMs needed for the SWS switch and the WSW
switch to achieve SNB property. However, it is known that
all-optical tunable WC and BV-TWBC are not commercially
available. At the current stage, it would be valuable to inves-
tigate the flex-grid Clos network without WCs.

Refs. [30]–[32] constructed large-scale OXCs based on Clos
network. Specially, Ref. [30] studied the ability of OXC-Clos
network with and without WCs to establish a lightpath from an
input to an output if there are idle transmitters at the input and
idle receivers at the output, and obtained the SNB conditions,
which specify the numbers of CMs and wavelengths needed
to fulfill SNB switching function. These three papers did not
explore the nonblocking conditions in the flex-grid scenario.

VI. CONCLUSION

This paper studies the nonblocking conditions for the flex-
grid OXC-Clos network without wavelength converters. The
main contribution is to propose the GDR strategy and seek the
WSNB conditions. The idea of the GDR is to restrict the usage
of CMs by the lightpaths of different granularities, thereby
leaving more CMs for large-granularity requests. Under this
strategy, we prove the WSNB conditions and show that the cost
of WSNB OXC-Clos network is remarkably smaller than that
of SNB OXC-Clos network. We study two system models, the
GPB model and GPuB model. We demonstrate that, compared
to the GPB model, the GPuB model leads to more flexibility in
network-bandwidth utilization only at a small cost of switching
fabrics. In the future, we will explore the WSNB conditions
under other granularity patterns.
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