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i Widely Applied Ethernets
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Growing of Ethernet Devices

= The number of devices is huge and still grows rapidly.
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Increase of Data Rate
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ldea of Energy Saving

s |EEE 802.3az: Shut down some component during idle periods
and make the system more energy proportional to load
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Energy Efficient Ethernet Protocol



Energy Efficiency Ethernet Protocol

Sleep: transition time from Active to LPI
Wakeup: transition time from LPI to Active
LPI: low power idle mode

Active: packets transmission period

Enough frames

Buffer is empty is accumulated
Power _ I ]
A
ACtive |||||| / / ||||||||||||||||||| /

Packet
transmission

LPIF :  —
Sleep LPI mode " Wakeup Active " Time

A Typical State Transition and Power Consumption of EEE Protocol



Counter and Timer

s Counter N
= Bound the backlogged queue length

m Timert(z>Ty)
= Bound the delay

LPI

das|s

T

Counter=1
Timer=0

T&N policy



Counter and Timer

s Counter N
= Bound the backlogged queue length

m Timert(z>Ty)
= Bound the delay

das|s

LPI

T

!

Counter=2
Timer=t4

T&N policy




Counter and Timer

s Counter N
= Bound the backlogged queue length

m Timert(z>Ty)
= Bound the delay

LPI

das|s

it

Counter=3
Timer=t,

T&N policy



Counter and Timer
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i 7 policy and N policy
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Performance Tradeoff

= Power efficiency Is improved at the expanse of delay.
= How to select N and t to optimize system performances?

(a) Packets come in isolation
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Our Works

Model BTR strategy as an M/G/1 queue with vacation time
which is governed by the arrival process.

Derive the P-K formula of mean delay.

Demonstrate the impacts of counter and timer on performances
and provide two rules to select appropriate parameters N and .
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Vacation Model



Cycles of EEE Working Process

= A renewal cycle (C)=Vacation period(V)+Busy period(B)

Timer or Counter
expires

Low Power Idle
(LPI)
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Cycles of EEE Working Process

= A renewal cycle (C)=Vacation period(V)+Busy period(B)
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ﬁ Key to Model the EEE Protocol

= Vacation period depends on the probability h,,
h,, = Pr{n arrivals during a vacation period V'}
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i Key to Model the EEE Protocol

= Vacation period depends on the probability h,,
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Arrival Event Tree of Vacation Period

= Six mutually independent events
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a, (n > N)

a, = Pr{n arrivals in the interval T}
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a, (0 <n<N)

a, = Pr{l, < T,,n — 1 arrivals in an interval t} +
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Probability h,,
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Mean VVacation Time

= Mean number of arrivals during vacation is
a=H'(1)
s H(z) = X2, h,z"

= & mean number of arrivals during vacation period

= By Little’s Law, the mean vacation time V is

_ — — a
Cl—AV—>V—/1—
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Power Efficiency



Power Efficiency 7
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P-K Formula of Mean Delay



Classical M/G/1 with Vacation System

= Vacation time distribution is independent of the arrival process
H(2) = 5o hnz" = Eio fy (0" ™ av ()"
=V*(1—Az)
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Failureof H(z) = V*(1 — Az)

= In EEE protocol, the vacation time is completely governed by
the arrival process. Take t policy for example
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Failure of Traditional P-K Formula

s P-K Formula in the classical M/G/1 queue with vacation time
p=2%X V%
2(1—-p) 2V

For the same reason, it fails in EEE systems
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Delay Analysis

= The waliting time for a frame is constituted by three parts.

Part 1 Part 2 Part 3
residual service time of all frames ) FE
I/vacation time Ri* waiting before F; se;(wce Ot Fi
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(b) Frame F;arrive during busy period



Mean Delay
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Mean Residual Time

R =E|R;|§ = 0] X Pr{¢ =0} + E|R;|§ = 1] X Pr{¢ =1}
=E[Ri|E =0] X (1 —-p)+E[R[ =1] Xp

- {O, if a arrival comes during a vacation period
1, if a arrival comes during a busy period

P — 1] = L 2 w2[]
E[R|§ = 1] = - 2X
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[1] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks, vol. 2. Prentice-Hall International New Jersey, 1992.



Residual VVacation Time of Each Arrival

= When given 1}, # of arrival during the residual vacation time
seen by a frame is determined.

I7,: vacation period terminated with n arrivals
Q;: # of arrival during residual vacation time R;
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Mean Residual Vacation Time

E[R;|E =0] =X7-1E|R;|§ =0, frameiarrivesinaV,]| - B,

Applying Little’s Law
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=Y 1 E|[Q;|E =0, frame i arrives V|- B,
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P-K Formula of Mean Delay

= Theorem 1: The mean delay of EEE systems is given by:

_ Ax? H'(1) | &
b= 2(1-p) T 2AH' (1) +X
s Classical P-K Formula
Y2 vz  _
p=— 4+ 4%
2(1-p) 2V
s When H(z) = V*(1— Az) holds, D = AXZ + (1) + X degenerate

2(1-p)  2AH'(1)
Into the classical form.
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Tradeoff and Parameter Selections



i Tradeoff: Timer versus Counter
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i Tradeoff: Timer versus Counter
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Approximation of Mean Vacation Time

V =~ min{V,, Vy} =min{ + 1, }+T
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Approximation of Performances

Power efficiency

=
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Optimal Relation of Timer and Counter

= 7&N policy can adapts to traffic fluctuations and avoids large
delays, especially in two side regions.

N policy suffers T policy suffers
from a large delay LN from a large delay
P Region 3 .
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Rule EEE 1

EEE 1: For a given steady state traffic rate A, the selection of
parameters T and N should comply with the following condition:

N—1
= A
T




Power Efficiency versus Mean Delay

s EXcessive large T and N degrade delay performance while
marginally enhancing the power efficiency.
= (a) With the increase of T, N, V > coand n - n*
= (b) D is almost linearly proportional to T and N
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Power Efficiency versus Mean Delay

= Mean delay: a function of the power efficiency
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Rule EEE 2

EEE 2: Parameter N of the EEE protocol can be selected
according to a given average delay requirement D from the
expression of Dy.

. Ax? (N+AT,)%2-N = o
N ™ 2(1-p) + 2A(N+AT,,) +X




Conclusions

Develop a new approach to analyze the M /G /1 queue with the
vacation time that is governed by the arrival process and the
parameters T and N.

Derive a generalized P-K formula of mean delay

_ Ax? H''(1)
D= 2(1-p) + 22H'(1)

+ X

Provide two rules to select appropriate T and N.
« EEE1

= EEE?2

. Ax? (N+AT,))2—N
N ™ 20-p) ' 2A(N+ATy)
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